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Abstract

Randomized Controlled Trials (RCTs) are currently the gold standard within

evidence-based medicine. Usually, they are conducted as sequential trials allowing

for monitoring for early signs of effectiveness or harm. However, evidence from early

stopped trials is often charged with being biased toward implausibly large effects

(e.g., Bassler et al. 2010). To our mind, this skeptical attitude is unfounded and

caused by the failure to perform appropriate conditioning in the statistical analysis

of the evidence. We contend that a shift from unconditional hypothesis tests in

the style of Neyman and Pearson to conditional hypothesis tests (Berger, Brown and

Wolpert 1994) gives a superior appreciation of the obtained evidence and significantly

improves the practice of sequential medical trials, while staying firmly rooted in

frequentist methodology.



1. Introduction.

Randomized Controlled Trials (RCTs) – trials where patients are randomly assigned to a

treatment and a control group, while controlling for possible confounders – are currently the

gold standard within evidence-based medicine (Worrall 2007). Usually, they are conducted

as sequential trials allowing for monitoring for early signs of effectiveness or harm.

In sequential trials, data are typically monitored as they accumulate. That is, we have

interim looks at the data and we may decide to stop the trial before the planned sample

size is reached. By terminating a trial when overwhelming evidence for the effectiveness

or harmfulness of a new drug is available, we can bound the prohibitive costs of a medical

trial and protect in-trial patients against receiving inferior treatments. Thus, monitoring

contributes to meeting ethical and epistemic requirements that clinical investigators are

confronted with.

However, the early termination of sequential trials raises an important ethical concern:

Is it mandatory to stop a trial as soon as the new treatment shows convincing signs of

superiority? Or should the trial be continued in order to achieve a result that would

convince the wide medical community of the superiority of the new treatment? On the one

hand, the health of actual patients must not be jeopardized by administering an inferior

treatment, on the other hand, establishing sound and univocal scientific conclusions will

facilitate an effective cure of future patients.

The issue is complicated by the fact that evidence from trials stopped early is often

met with skepticism in the medical literature: “RCTs stopped early for benefit [...] show

implausibly large treatment effects [...] clinicians should view the results of such trials with

skepticism” (Montori et al. 2005: 2203) This standpoint is affirmed by the recent STOPIT-

2 metastudy where Bassler et al. (2010: 1187) blame truncated RCTs with “appreciable

overestimates of effect”.

While we cannot adjudicate the far-reaching question about the ethical legitimacy of



monitoring, we side with Worrall (2008: 418) that “no informed view of the ethical issues

[...] can be adopted without first taking an informed view of the evidential-epistemological

ones”. In particular, we think that the skeptical attitude about trials stopped early for

benefit stems from a fallacious statistical interpretation of such trials. These misinterpre-

tations are, to our mind, mainly caused by a lack of awareness about issues in statistical

methodology that also troubles other disciplines, such as economics and psychology. In-

deed, the two grand schools of statistical inference – Bayesian and frequentist inference –

are in outright conflict about how to plan and to evaluate a sequential trial.

Our essay takes the following route. First, we expose the arguments for and against

the presence of bias in early stopped trials and explain why this problem is related to

principled questions in statistical methodology (Sect. 2). Subsequently, we argue that

the real problem is the use of unconditional error assessments in sequential trials, rather

than the often-invoked divide between Bayesians and frequentists (Sect. 3). Then we show

that conditional frequentist tests reconcile the need for valid post-experimental appraisal

of the evidence with the realities of the current regulatory framework in medicine, and in

particular with the implied preference for frequentist analysis (Sect. 4). Finally, we wrap

up our results and sketch how a superior methodological framework can improve the design

and practice of sequential trials, and eventually lead to better decisions (Sect. 5).

2. The Assessment of Truncated Trials.

The practice of stopping RCTs early for benefit has been subject to severe epistemological

criticism. Skepticism surrounds the results of these trials, due to the fact that they show

implausibly large treatment effects, relative to what the medical community would be

inclined to expect. In a review of 134 trials stopped early for benefit, Montori et al. (2005)

point to an inverse correlation between sample size and treatment effect: the smaller the

sample size achieved by the trial at the moment of stopping, the larger the estimate it



provided for the effect. These findings are supported by a more recent study by Bassler

et al. (2010) where truncated trials report significantly higher effects than trials that were

not stopped early.

Some prominent cases seem to corroborate this skepticism. Mueller et al. (2007) report

a case of two leukemia treatments where interim analyses suggested a high relative risk

reduction (53% and 45%) in a particular chemotherapy regimen. However, that assessment

had to be reversed after completion of the trial. In the medical community, such cases fuel

mistrust toward anticipated claims of benefit, and nourish the fear of promoting a treatment

that is actually less efficacious. Therefore, stopping a trial early might lead to a result that

the medical community does not trust, canceling the epistemic and ethical benefits that

monitoring possesses in the long run.

However, not all methodologists share this pessimistic view on trials stopped early.

Goodman, Berry and Wittes (2010) observe that pronounced effect size differences between

truncated and completed trials are actually predictable: highly efficacious treatments will

naturally be more prone to early termination for benefit. Hence, the observed difference in

estimated effect size is precisely what we should expect. Comparing truncated to completed

trials amounts, as highlighted by Berry, Carlin and Connor (2010), to selecting the trials

to be compared on the basis of their outcome.

In this context, prior knowledge or empirically-based prior expectations are highly

relevant for sound decision-making. Unfortunately, at present they enter the final decisions

only in a methodologically unsatisfactory ad hoc way. This observation suggests that

systematical use of Bayesian inference may address the problem. A Bayesian represents

subjective uncertainty by means of a prior probability distribution over the values of the

quantity of interest (e.g., relative risk reduction). By means of Bayes’ Theorem, this

distribution is updated to a posterior probability distribution that synthesizes the observed

evidence with the background knowledge.



In the Bayesian framework, implausibly large observed effects can be balanced by

prior expectations and lead to a more conservative conclusion than in standard frequen-

tist methodology. In particular, it can be explained that truncated trials provide, ceteris

paribus, less confidence than trials with a comparable effect size that were completed

(Goodman 2007). The smaller the actual sample, the more will the posterior distribution

resemble the prior distribution, for a given effect size. So it appears that the worries of

Montori et al. (2005) and Bassler et al. (2010) – overestimation of treatment effect in

truncated RCTs – could be alleviated by switching the statistical framework.

Despite the advantages just outlined, there are some serious counterarguments to the

viability of Bayesianism in clinical trials. First of all, the specification of a prior prob-

ability function (and a decision model) is problematic in a number of ways (cf. Moyé

2008). Second, in Bayesian statistics, experimental design is apparently irrelevant for the

post-experimental conclusions. This is unacceptable to regulatory bodies that are keen to

promote proper design of medical trials as a means to ensure the validity of trial results

(e.g., FDA 2010).

Even though some of these worries are regulatory rather than epistemological, they are

certainly legitimate. Indeed, we believe that solving the interpretational problems with

truncated trials does not require to pass from the frequentist to the Bayesian paradigm. As

we will argue in the upcoming sections, it is more fruitful to turn to a different distinction:

namely, to replace unconditional by conditional procedures.

3. Problems with unconditional inference in sequential medical

trials.

Sequential medical trials usually control the reliability of a testing procedure from a pre-

experimental point of view, by means of Type I and Type II error rates. These error



probabilities are extremely important for proper experimental design, and they get a lot of

attention from a regulatory point of view. Moreover, Mayo and Kruse (2001) have argued,

among others, that if the sampling plan is violated, error probabilities cannot be properly

controlled and are actually inflated far beyond acceptable.

However, adherence to a proper sequential sampling plan is not sufficient to secure a

reliable result. Arguably, what is most disturbing to the medical community is the fact

that, according to current procedures, a truncated trial has prima facie the same reliability

as a trial carried to the planned end. This is because Neyman and Pearson’s type I and II

error rates are unconditional quantities, that is, they are insensitive to whether the data

are just at the significance boundary or far beyond it.

In line with this observation, we contend that the unconditional nature of Neyman-

Pearson hypothesis tests is the culprit for their epistemological shortcomings. To motivate

this claim, we walk the reader through an example by Cox (1958) and Royall (1997: 74–75).

Suppose that we test H0 : N (0, σ2) against H1 : N (1, σ2) with known σ2, and that the toss

of a fair coin decides whether we draw N=1 or N=100 i.i.d. observations. It seems natural

to apply the most powerful test at the 5% level in either case. However, the probabilistic

mixture of the two most powerful tests at the 5% level is not the most powerful test in the

overall experiment. We can do better if we reject H0 for x1 > 1.282 in the case of N=1,

while rejecting H0 if x̄ > 0.508 in the case of N=100. Both procedures are tests at the 5%

level, but the second, “gerrymandered” test has a greater power (69%) than the mixture

of unconditional tests (63%).

One may be inclined to dismiss the second test because not all of its components are

tests at the 5% level. In the N=1 case, the nominal significance level of the test is 10%.

However, from an unconditionalist (pre-experimental) viewpoint, only the overall error

rates should count. Here, the superior power features speak for the second, gerrymandered

test. This feature of the prevalent Neyman-Pearson methodology reveals the tension be-



tween the pre-experimental design of unconditional procedures, and the need to efficiently

learn from the actual data. Unconditional error rates and confidence intervals do not

address that second goal:

Now if the object of the analysis is to make statements by a rule with certain

specified long-run properties, the unconditional test [. . . ] is in order. [. . . ] If,

however, our objective is to say what we can learn from the data we have, the

unconditional test is surely no good. (Cox 1958: 360)

The example can, of course, be easily generalized. It undermines the view that uncondi-

tional, pre-experimental error probabilities can qualify the goodness of an inference.

Therefore, practitioners that rely on unconditional procedures have to find informative

and reliable post-data assessments of the evidence. Often, they report the observed p-value

to quantify the conclusiveness of the rejection of the null. However, p-values really combine

the worst of all worlds. Since comprehensive and devastating criticisms of using p-values

in scientific experiments have been delivered elsewhere (Royall 1997; Goodman 1999),

we only mention their most fundamental failures: they neither possess a valid frequency

interpretation nor do they provide a useful measure of confidence in the null hypothesis.

Moving to confidence intervals is often suggested as a way of circumventing the p-value

problem (e.g., Cumming and Finch 2005). However, a 95% confidence interval merely

specifies the set of parameter values that are consistent with the observation at the 95%

level. This does not mean that we should have 95% confidence that the confidence interval

includes the parameter value. In fact, the degree of confidence is just an average coverage

rate over intervals from repeated random samples; it is not the coverage probability of the

one particular interval that the investigator happens to get. Therefore, some confidence

intervals may include the entire sample space (cf. Seidenfeld 1981), raising the question of

whether the entire notion is a misnomer.



These problems of unconditional inference can be overcome by conditioning on the

relevant chunks of information. In the next section we will see how conditional inference

may resolve the methodological confusion about interpreting truncated RCTs, without

abandoning the framework of frequentist statistics.

4. Conditional Frequentist Inference.

Conditional inference tries to improve upon unconditional procedures by quantifying the

degree of confidence that we can have in our conclusions as a function of the observed

evidence. More precisely, conditional inference builds on the strength of the observed ev-

idence. As we will show in this section, it can be justified from both the Bayesian and

the frequentist perspective. The idea comes up for the first time in Cox’s (1958) seminal

paper, and has been developed later by Kiefer (1977) and Berger (2003), together with

various co-authors.

The main idea can be motivated by a very simple example (Kiefer 1977; Berger 2003).

Two observations X1 and X2 are taken with probability law

Xi =


θ + 1 with probability 1/2

θ − 1 with probability 1/2

If we now construct a confidence interval for θ, then the interval Cθ(·, ·) defined by

Cθ(X1, X2) :=


X1 + 1 ifX1 = X2

(X1 +X2)/2 ifX1 6= X2

has an unconditional coverage of 75%. Yet, this does not seem to be a sensible conclu-

sion regarding the confidence that the data warrant with respect to the true value of θ.



Dependent on whether we observe |X1 − X2| = 0 or |X1 − X2| = 2, we are entitled to a

statement with (a posteriori) confidence 50% and 100%, respectively. The unconditional

coverage of 75% neglects that, after learning the strength of the evidence (that is, the

value of |X1 − X2|), we are in a much better position to assess the confidence which the

data grant about our inference. Thus, conditioning on the value of |X1−X2| improves the

accuracy of our conclusions (cf. Cox 1958: 361–363).

It is also noteworthy that the probability distribution of |X1−X2| does not depend on

the value of θ. That is, |X1 −X2| is an ancillary statistic with regard to θ. In particular,

conditioning on the value of |X1 −X2| is quite different from Bayesian conditionalization:

where Bayesian change their subjective probability distributions by conditioning on the

entire data, conditioning on the value of |X1 − X2| just helps to better appreciate the

(frequentist) interpretation of the data.

If this idea is applied to hypothesis testing, which is the major issue in medical trials,

unconditional error rates are replaced by a conditional error probabilities. In the following

we will outline the basic idea of conditional tests, following Berger, Brown and Wolpert

(1994).

Consider, for the purpose of mathematical convenience, the case of testing a point null

hypothesis H0 : θ = θ0 against the simple alternative H1 : θ = θ1 in some probability model

(X ,B(X ); θ ∈ Θ).

Define f0(x) and f1(x) as the probability densities of data x ∈ X under the hypotheses

H0 and H1, and let the Bayes factor B(x) := f0(x)/f1(x) be the ratio of the probability

density functions. Now, let F0 and F1 be the cumulative distribution functions correspond-

ing to the Bayes Factor.

F0(c) := PH0(B(X) ≤ c) F1(c) := PH1(B(X) ≤ c).



We now divide X into a partition (Xs)s∈[0,1] defined by

Xs := {x ∈ X |B(x) = s ∨B(x) = F−10 (1− F1(s))} (1)

The different Xs represent, intuitively, different observed strengths of evidence. This

can also be made precise mathematically: under the assumption F0(1) = 1−F1(1), which is

satisfied for many distributions used in practice, the Xs have the same probability density

under H0 and H1, for all values of s. In other words, their distribution is independent of

which hypothesis is true (Berger, Brown and Wolpert 1994: 1789–1790).

This ancillarity property is shared with the statistic |X1−X2| in the above toy example.

Therefore, Xs is excellently suited for the purpose of conditioning : to take the observed

strength of the evidence into account without already telling us something about the pa-

rameter of interest. Thus, conditioning exploits a crucial strength of Bayesian paradigm –

to identify a sensible measure of evidence – without assigning a subjective probability to

competing hypotheses.

The conditional error probability can now be calculated by conditioning on the par-

ticular set Xs in which the observed data fall. In particular, we can define a conditional

frequentist test by

T ∗(X) =


RejectH0 ifB(X) < 1

AcceptH0 ifB(X) ≥ 1

and for observed B(x) = s, we report conditional error probabilities

α(s) = PH0(rejectH0|X ∈ Xs) =
s

1 + s

β(s) = PH1(acceptH0|X ∈ Xs) =
1

1 + s

where the latter equalities have been proven by Berger, Brown and Wolpert (1994, Theorem



1). Clearly, by using the conditional instead of the unconditional error probabilities, we

gain a much better appreciation of the chance of a wrong decision, given the particular

data that we have observed. The higher the Bayes factor, the more confident we can be

about an acceptance of the null, and vice versa. In particular, the classical, unconditional

test just detects whether the data are within or outside the rejection region (and leaves

the rest to the notorious p-values) whereas the conditional test allows for a fine-grained,

properly frequentist discrimination among trials with significant outcomes.

We turn now to briefly discussing a couple of objections that could be made from within

the frequentist perspective.

First, it could be argued that T ∗ makes it far too easy to reject the null (B(X) < 1)

whereas in medicine, evidence has to be really strong before we are convinced of the

efficacy of a new treatment and approve of the drug. To this we simply respond that

T ∗ has been selected because of its simplicity, but we can easily change the rejection

region according to contextual requirements. To obtain a sensible conditional test, we will

often have to use non-ancillary conditioning statistics and to include a no-decision region

(Berger, Boukai and Wang 1997: 145–147). However, these features align well with the

caution toward premature conclusions that prevails in the medical community, and do not

pose any problem for the practitioner.

Second, there may be worries about the scope of the above procedure which we have

only explained for the easiest possible case of hypothesis testing. However, Berger, Boukai

and Wang (1997) have extended conditional tests to simple vs. composite testing problems,

and in particular, to the two-sided null hypothesis testing problems that frequently occur

in RCTs.

Third, the use of the Bayes factor may indicate that the conditional test is actually a

Bayesian test in frequentist cloths. Indeed, for impartial priors p(H0) = p(H1) = 1/2 the



posteriors

p(H0|x) =
(
1 +B(x)−1

)−1
=

B(x)

1 +B(x)

p(H1|x) = (1 +B(x))−1 =
1

1 +B(x)

just correspond to the conditional error probabilities for rejecting and accepting H0, re-

spectively. However, B(X) possesses a frequentist interpretation, too, since it identifies

the most powerful frequentist test in the simple vs. simple testing problem.1

Thus, Bayesians and frequentists can conduct the same (conditional) test and obtain the

same numerical conclusions. For the medical practitioner, philosophical questions about

the interpretation of probability are clearly secondary as long as there is methodological

agreement on procedures and post-experimental data assessment (cf. Berger 2003). In

this sense, conditional inference is a genuine reconciliation of Bayesian and frequentist

methodology and a real asset for practitioners.

We would like to conclude this section by means of an application of conditional in-

ference to sequential medical trials. The example involves a trial for adjuvant therapy in

resectable hepatocellular carcinoma (Lau et al. 1999). The trial was stopped early based

on interim findings, but additional data were available after the decision to stop was taken.

Pocock and White (1999) describe the situation in detail:

“At the planned interim analysis, the local disease recurrence rates for the active

treatment (intra-arterial lipiodol-iodine-131) and control (no adjuvant treat-

1This is the content of the Neyman-Pearson Lemma. Furthermore Berger (2003) intro-

duced a conditional test that relies on the p-value as the conditioning statistics and yields

the same post-data error probabilities as T ∗.



ment) groups were three/14 (21%) and 11/16 (69%) respectively (p = 0.01).

According to the predefined stopping rule, p < 0.029 was sufficient for early

stopping. [...] Thus, the investigators decided to stop the trial. [However],

13 more patients were randomised before the trial was stopped, and the inves-

tigators also decided to postpone analysis while patients already randomised

were followed up. Hence, the report (18 months after the trial was stopped)

reveals updated recurrence rates of six/21 (29%) and 13/22 (59%), respectively

(p = 0.04). Thus the absolute difference in recurrence rates shrank from 48%

to 30% during the interval between stoppage and publication.” (1999: 944)

Such shrinkage of the estimated benefit between the interim and the final analysis is pre-

cisely what fuels clinicians’ worries about “stopping on a random high” and adds to their

skepticism about truncated trials. In this situation conditional error rates can provide real

guidance. We set up an alternative hypothesis H1 according to Lau et al.’s (1999) expec-

tations that “131I-lipiodol would reduce the rate of recurrence [postulated to be 50%] by

50% and double the disease-free survival rate” (1999: 798).

Using this value in calculation of the Bayes factor B(x) = 0.09 yields a conditional

type I error rate of α∗ = 9% at the interim analysis, instead of the unconditional error

rate of α = 5%.2 Moreover, we can dismiss the apparently strong unconditional p-value

of p = 0.01%, which is just indicative of an unexpectedly high performance. By contrast,

the conditional error reflects the greater statistical uncertainty associated with the small

sample when the decision to stop the trial was taken. At the end of the trial, the conditional

2Since the trial was stopped following a proper group sequential rule, α remains the

same regardless of when the trial is terminated, unlike in Wald’s (1947) classical Sequential

Probability Ratio Test.



test still rejects the null, but the probability of error is now higher: the calculation based

on B(x) = 0.16 yields a 14% probability of error, which is in line with the reservations of

the clinicians involved.

We now briefly wrap up the advantages of conditional over unconditional inference.

First, the assessment of the error probability depends on the observed data and is thus way

more informative than in the unconditional framework. This alleviates the interpretational

problem mentioned in Section 2, since conditional error allows medical readers to assess

the confidence in the outcome based on the observed data. Clearly, medical investigators

should be more concerned with the actual probability of drawing the wrong inference than

with the absolute (unconditional) error rate of the testing procedure, also because clinicians

have to make ethical decisions for their actual patients (cf. Nardini 2013).

As a further point, the error probabilities (3) and (4) are independent of the stopping

rule, that is the sampling plan determining when the trial is terminated. In a RCT, the

stopping rule can never be fully specified, since one cannot cover in advance all eventualities

that might happen during a sequential trial. Independence from the stopping rule entails

that interpretation of the results and assessment of error are possible even if the stopping

rule was misspecified or could not be adhered to due to unforeseen circumstances. This is

a substantial practical asset (cf. Sprenger 2009).

This should not be misunderstood as the claim that pre-data analysis and experimental

design are superfluous. Unfortunately, Berger, Brown and Wolpert (1994: 1803) make a

claim into that direction, but given the strong emphasis on careful design by methodol-

ogists and regulatory bodies (cf. Moyé 2008; FDA 2010), this is unlikely to increase the

acceptance of the conditional approach among medical practitioners. We would like to

stress that no such claim is required for making a case for the superiority of the condi-

tional frequentist approach. Moreover, since conditional tests can be conducted from both

a Bayesian and a frequentist perspective, practitioners do not have to decide for either



camp.

Finally, there are interesting implications for the philosophy of statistics: if the “error

statisticians” (e.g., Mayo 1996) are right that learning from error is indeed a cornerstone

of inductive inference, then a move to conditional inference may protect their framework

against the objections that we have mentioned in Sect. 3. In particular, there is no need

to tie an error-statistical methodology to unconditional inference. However, further devel-

oping this line of thought goes beyond the scope of this paper.

5. Conclusions.

In this paper we have analyzed the impact of statistical methodology on a substantive

ethical and societal question, namely data monitoring in sequential medical trials. In the

medical literature, trials stopped early for benefit are often charged with being biased

towards implausibly large treatment effects (e.g., Bassler et al. 2010).

We think that this worry is based upon a misinterpretation of sequential trials that

is in turn due to shortcomings of standard frequentist procedures. It has been argued

(e.g., Goodman 2007) that a Bayesian perspective overcomes this problem: if a trial is

stopped early because of an implausibly large effect, blending its result with a (conservative)

prior probability distribution naturally mitigates the conclusion. However, as a matter of

research tradition and regulatory requirements – in particular, concerns about individual

biases in generating prior distributions –, the Bayesian framework does not provide an easy

way out.

In this essay we contend that the real issue is not the contrast between Bayesian and fre-

quentist methodology. Rather, we are concerned about the shortcomings of unconditional

inference. We have elaborated that while unconditional error probabilities may be helpful

in the design of an experiment, they do not tell us what we have actually learned from



the data. We have therefore defended proper conditioning – calculating error probabilities

conditional on the strength of the observed evidence – as a way of curing the deficits of

unconditional frequentist inference. This approach has a natural application to sequential

testing and both a valid Bayesian and a valid frequentist interpretation.

As we have demonstrated in a brief example, this approach holds considerable promise

for the interpretation of early stopped trials in medicine. The possibility of post-data

assessments of the probability of an erroneous conclusion represents an invaluable asset for

the practitioner and the decision-maker. The results of a medical trial tell much more than

the simple acceptance or rejection of a scientific hypothesis: they indicate where evidence

is strong and where it is inconclusive, indicating the need for further research. Conditional

inference, we believe, can improve the methodology of clinical trials because it allows to

take this additional information into account. In conclusion, a clearer view on issues in

statistical methodology can help to better appreciate data from sequential medical trials

and lead to more efficient and ethically superior decisions in medical research.
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