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The Logic of Explanatory Power*

Jonah N. Schupbach and Jan Sprenger†‡

This article introduces and defends a probabilistic measure of the explanatory power
that a particular explanans has over its explanandum. To this end, we propose several
intuitive, formal conditions of adequacy for an account of explanatory power. Then,
we show that these conditions are uniquely satisfied by one particular probabilistic
function. We proceed to strengthen the case for this measure of explanatory power by
proving several theorems, all of which show that this measure neatly corresponds to
our explanatory intuitions. Finally, we briefly describe some promising future projects
inspired by our account.

1. Explanation and Explanatory Power. Since the publication of Hempel
and Oppenheim’s (1948) classic investigation into “the logic of explana-
tion,” philosophers of science have earnestly been seeking an analysis of
the nature of explanation. Necessity (Glymour 1980), statistical relevance
(Salmon 1971), inference and reason (Hempel and Oppenheim 1948;
Hempel 1965), familiarity (Friedman 1974), unification (Friedman 1974;
Kitcher 1989), causation (Salmon 1984; Woodward 2003), and mechanism
(Machamer, Darden, and Craver 2000) are only some of the most popular
concepts that such philosophers draw on in the attempt to describe nec-
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106 JONAH N. SCHUPBACH AND JAN SPRENGER

essary and sufficient conditions under which a theory explains some prop-
osition.1 A related project that is, on the other hand, much less often
pursued by philosophers today is the attempt to analyze the strength of
an explanation—that is, the degree of explanatory power that a particular
explanans has over its explanandum. Such an analysis would clarify the
conditions under which hypotheses are judged to provide strong versus
weak explanations of some proposition, and it would also clarify the
meaning of comparative explanatory judgments such as “hypothesis A
provides a better explanation of this fact than does hypothesis B.”

Given the nature of these two projects, the fact that the first receives
so much more philosophical attention than the second can hardly be
explained by appeal to any substantial difference in their relative philo-
sophical imports. Certainly, the first project has great philosophical sig-
nificance; after all, humans on the individual and social levels are con-
stantly seeking and formulating explanations. Given the ubiquity of
explanation in human cognition and action, it is both surprising that this
concept turns out to be so analytically impenetrable and critical that
philosophers continue to strive for an understanding of this notion.2 The
second project is, however, also immensely philosophically important.
Humans regularly make judgments of explanatory power and then use
these judgments to develop preferences for hypotheses or even to infer
outright to the truth of certain hypotheses. Much of human reasoning—
again, on individual and social levels—makes use of judgments of ex-
planatory power. Ultimately then, in order to understand and evaluate
human reasoning generally, philosophers need to come to a better un-
derstanding of explanatory power.

The relative imbalance in the amount of philosophical attention that
these two projects receive is more likely due to the prima facie plausible
but ultimately unfounded assumption that one must have an analysis of
explanation before seeking an analysis of explanatory power. This as-
sumption is made compelling by the fact that in order to analyze the
strength of something, one must have some clarity about what that thing
is. However, it is shown to be much less tenable in light of the fact that
humans do generally have some fairly clear intuitions concerning expla-
nation. The fact that there is no consensus among philosophers today
over the precise, necessary, and sufficient conditions for explanation does
not imply that humans do not generally have a firm semantic grasp on
the concept of explanation. Just how firm a semantic grasp on this concept

1. See Woodward (2009) for a recent survey of this literature.

2. Lipton (2004, 23) refers to this fact that humans can be so good at doing explanation
while simultaneously being so bad at describing what it is they are doing as the “gap
between doing and describing.”
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LOGIC OF EXPLANATORY POWER 107

humans actually have is an interesting question. One claim of this article
will be that our grasp on the notion of explanation is at least sufficiently
strong to ground a precise formal analysis of explanatory power, even if
it is not strong enough to determine a general account of the nature of
explanation.

This article attempts to bring more attention to the second project above
by formulating a Bayesian analysis of explanatory power. Moreover, the
account given here does this without committing to any particular theory
of the nature of explanation. Instead of assuming the correctness of a
theory of explanation and then attempting to build a measure of explan-
atory power derivatively from this theory, we begin by laying out several
more primitive adequacy conditions that, we argue, an analysis of ex-
planatory power should satisfy. We then show that these intuitive ade-
quacy conditions are sufficient to define for us a unique probabilistic
analysis and measure of explanatory power.

Before proceeding, two more important clarifications are necessary.
First, we take no position on whether our analysis captures the notion
of explanatory power generally; it is consistent with our account that
there be other concepts that go by this name but which do not fit our
measure.3 What we do claim, however, is that our account captures at
least one familiar and epistemically compelling sense of explanatory power
that is common to human reasoning.

Second, because our explicandum is the strength or power of an ex-
planation, we restrict ourselves in presenting our conditions of adequacy
to speaking of theories that do in fact provide explanations of the ex-
planandum in question.4 This account thus is not intended to reveal the
conditions under which a theory is explanatory of some proposition (that
is, after all, the aim of an account of explanation rather than an account
of explanatory power); rather, its goal is to reveal, for any theory already
known to provide such an explanation, just how strong that explanation
is. Ultimately then, this article offers a probabilistic logic of explanation
that tells us the explanatory power of a theory (explanans) relative to

3. As a possible example, Jeffrey (1969) and Salmon (1971) both argue that there is
a sense in which a hypothesis may be said to have positive explanatory power over
some explanandum so long as that hypothesis and explanandum are statistically rel-
evant, regardless of whether they are negatively or positively statistically relevant. As
will become clear in this article, insofar as there truly is such a notion of explanatory
power, it must be distinct from the one that we have in mind.

4. To be more precise, the theory only needs to provide a potential explanation of the
explanandum, where a theory offers a potential explanation of some explanandum just
in case, if it were true, then it would be an actual explanation of that explanandum.
In other words, this account may be used to measure the strength of any potential
explanation, regardless of whether the explanans involved is actually true.
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108 JONAH N. SCHUPBACH AND JAN SPRENGER

some proposition (explanandum), given that that theory constitutes an
explanation of that proposition. In this way, this article forestalls the
objection that two statements may stand in the probabilistic relation de-
scribed while not simultaneously constituting an explanation.

2. The Measure of Explanatory Power . The sense of explanatory powerE
that this article seeks to analyze has to do with a hypothesis’s ability to
decrease the degree to which we find the explanandum surprising (i.e., its
ability to increase the degree to which we expect the explanandum). More
specifically, a hypothesis offers a powerful explanation of a proposition,
in this sense, to the extent that it makes that proposition less surprising.
This sense of explanatory power dominates statistical reasoning in which
scientists are “explaining away” surprise in the data by means of assuming
a specific statistical model (e.g., in the omnipresent linear regression pro-
cedures). But the explaining hypotheses need not be probabilistic; for
example, a geologist will accept a prehistoric earthquake as explanatory
of certain observed deformations in layers of bedrock to the extent that
deformations of that particular character, in that particular layer of bed-
rock, and so on, would be less surprising given the occurrence of such an
earthquake.

This notion finds precedence in many classic discussions of explanation.
Perhaps its clearest historical expression occurs when Peirce (1931–35,
5.189) identifies the explanatoriness of a hypothesis with its ability to
render an otherwise “surprising fact” as “a matter of course.”5 This sense
of explanatory power may also be seen as underlying many of the most
popular accounts of explanation. Most obviously, Deductive-Nomological
and Inductive-Statistical accounts (Hempel 1965) and necessity accounts
(Glymour 1980) explicitly analyze explanation in such a way that a theory
that is judged to be explanatory of some explanandum will necessarily
increase the degree to which we expect that explanandum.

Our formal analysis of this concept proceeds in two stages: in the first
stage, a parsimonious set of adequacy conditions is used to determine a

5. This quote might suggest that explanation is tied essentially to necessity for Peirce.
However, elsewhere, Peirce clarifies and weakens this criterion: “to explain a fact is to
show that it is a necessary or, at least, a probable result from another fact, known or
supposed” (1935, 6.606; emphasis mine). See also Peirce (1958, 7.220). There are two
senses in which our notion of explanatory power is more general than Peirce’s notion
of explanatoriness: first, a hypothesis may provide a powerful explanation of a sur-
prising proposition, in our sense, and still not render it a matter of course; that is, a
hypothesis may make a proposition much less surprising while still not making it
unsurprising. Second, our sense of explanatory power does not suggest that a prop-
osition must be surprising in order to be explained; a hypothesis may make a prop-
osition much less surprising (or more expected), even if the latter is not very surprising
to begin with.
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LOGIC OF EXPLANATORY POWER 109

measure of explanatory power up to ordinal equivalence. In other words,
we show that, for all pairs of functions f and f ′ that satisfy these adequacy
conditions, if and only if ; all′ ′ ′ ′ ′ ′f(e, h) 1 (p, !)f(e , h ) f (e, h) 1 (p, !)f (e , h )
such measures thus impose the same ordinal relations on judgments of
explanatory power. This is already a substantial achievement. In the sec-
ond stage, we introduce more adequacy conditions in order to determine
a unique measure of explanatory power (from among the class of ordinally
equivalent measures).

In the remainder of the article, we make the assumption that the prob-
ability distribution is regular (i.e., only tautologies and contradictions are
awarded rational degrees of belief of 1 and 0). This is not strictly required
to derive the results below, but it makes the calculations and motivations
much more elegant.

2.1. Uniqueness Up to Ordinal Equivalence. The first adequacy condi-
tion is, we suggest, rather uncontentious. It is a purely formal condition
intended to specify the probabilistic nature and limits of our explication
(which we denote ):E

CA1 (Formal Structure): For any probability space and regular prob-
ability measure , is a measurable function from two(Q, A, Pr (7)) E
propositions to a real number . This functione, h � A E(e, h) � [�1, 1]
is defined on all pairs of contingent propositions (i.e., cases such as

, etc., are not in the domain of ).6 This implies by Bayes’sPr (e) p 0 E
Theorem that we can represent as a function of , , andE Pr (e) Pr (hFe)

, and we demand that any such function be analytic.7Pr (hF¬e)

The next adequacy condition specifies, in probabilistic terms, the general
notion of explanatory power that we are interested in analyzing. As men-
tioned, a hypothesis offers a powerful explanation of a proposition, in
the sense that we have in mind, to the extent that it makes that proposition
less surprising. In order to state this probabilistically, the key interpretive
move is to formalize a decrease in surprise (or increase in expectedness)
as an increase in probability. This move may seem dubious, depending
on one’s interpretation of probability. Given a physical interpretation (e.g.,
a relative frequency or propensity interpretation), it would be difficult

6. The background knowledge term k always belongs to the right of the solidus “ ”F
in Bayesian formalizations. Nonetheless, here and in the remainder of this article, we
choose for the sake of transparency and simplicity in exposition to leave k implicit in
all formalizations.

7. A real-valued function f is analytic if we can represent it as the Taylor expansion
around a point in its domain. This requirement ensures that our measure will not be
composed in an arbitrary or ad hoc way.
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110 JONAH N. SCHUPBACH AND JAN SPRENGER

indeed to saddle such a psychological concept as surprise with a proba-
bilistic account. However, when probabilities are themselves given a more
psychological interpretation (whether in terms of simple degrees of belief
or the more normative degrees of rational belief), this move makes sense.
In this case, probabilities map neatly onto degrees of expectedness.8 Ac-
cordingly, insofar as surprise is inversely related to expectedness (the more
surprising a proposition, the less one expects it to be true), it is straight-
forwardly related to probabilities. Thus, if h decreases the degree to which
e is surprising, we represent this with the inequality . ThePr (e) ! Pr (eFh)
strength of this inequality corresponds to the degree of statistical relevance
between e and h, giving us:

CA2 (Positive Relevance): Ceteris paribus, the greater the degree of
statistical relevance between e and h, the greater the value of

.E(e, h)

The third condition of adequacy defines a point at which explanatory
power is unaffected. If does nothing to increase or decrease the degreeh2

to which e, , or any logical combination of e and are surprising, thenh h1 1

will not make e any more or less surprising than by itself alreadyh ∧ h h1 2 1

does. In this case, tacking on to our hypothesis has no effect on theh2

degree to which that hypothesis alleviates our surprise over e. Given that
explanatory power has to do with a hypothesis’s ability to render its
explanandum less surprising, we can state this in other words: if hash2

no explanatory power whatever relative to e, , or any logical combi-h1

nation of e and , then explanandum e will be explained no better orh1

worse by conjoining to our explanans . Making use of the aboveh h2 1

probabilistic interpretation of a decrease in surprise, this can be stated
more formally as follows:

CA3 (Irrelevant Conjunction): If andPr (e ∧ h ) p Pr (e) # Pr (h )2 2

andPr (h ∧ h ) p Pr (h ) # Pr (h ) Pr (e ∧ h ∧ h ) p Pr (e ∧ h ) #1 2 1 2 1 2 1

, then .Pr (h ) E(e, h ∧ h ) p E (e, h )2 1 2 1

The fourth adequacy condition postulates that the measure of explan-
atory power should, if the negation of the hypothesis entails the explan-
andum, not depend on the prior plausibility of the explanans. This is
because the extent to which an explanatory hypothesis alleviates the sur-
prising nature of some explanandum does not depend on considerations
of how likely that hypothesis is in and of itself, independent of its relation

8. This is true by definition for the first, personalist interpretation; in terms of the
more normative interpretation, probabilities still map neatly onto degrees of expect-
edness, although these are more specifically interpreted as rational degrees of expect-
edness.
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LOGIC OF EXPLANATORY POWER 111

to the evidence. More precisely, it would strike us as odd if we could,
given that entails e, rewrite as a function of plus either¬h E(e, h) Pr (h)

or . In that case, the plausibility of the hypothesis in itselfPr (hFe) Pr (e)
would affect the degree of explanatory power that h lends to e. Since we
find such a feature unattractive, we require what follows:

CA4 (Irrelevance of Priors): If entails e, then the values of¬h
do not depend on the values of .9E(e, h) Pr (h)

We acknowledge that intuitions might not be strong enough to make
a conclusive case for CA4. However, affirming that condition is certainly
more plausible than denying it. Moreover, it only applies to a very specific
case ( ), while making no restrictions on the behavior of the ex-¬h X e
planatory power measure in more general circumstances.

These four conditions allow us to derive the following theorem (proof
in app. A):

Theorem 1. All measures of explanatory power satisfying CA1–CA4
are monotonically increasing functions of the posterior ratio

.Pr (hFe)/ Pr (hF¬e)

From this theorem, two important corollaries follow. First, we can derive
a result specifying the conditions under which takes its maximal andE
minimal values (proof in app. A):

Corollary 1. Measure takes maximal value if and only if hE(e, h)
entails e and minimal value if and only if h implies .¬e

Note that this result fits well with the concept of explanatory power that
we are analyzing, according to which a hypothesis explains some prop-
osition to the extent that it renders that proposition less surprising (more
expected). Given this notion, any h ought to be maximally explanatorily
powerful regarding some e when it renders e maximally unsurprising
(expected), and this occurs whenever h guarantees the truth of e
( ). Similarly, h should be minimally explanatory of e if e isPr (eFh) p 1
maximally surprising in the light of h, and this occurs whenever h implies
the falsity of e ( ).Pr (eFh) p 0

The second corollary constitutes our desired ordinal equivalence result:

Corollary 2. All measures of explanatory power satisfying CA1–CA4
are ordinally equivalent.

9. More precisely, we demand that there exists a function so that, iff : [0, 1] r � ¬h
implies e, either or . Note that in this case,E(e, h) p f (Pr (hFe)) E(e, h) p f (Pr (e))

, so . If a function f with the abovePr (hF¬e) p 1 Pr (h) p Pr (hFe) Pr (e) � 1 � Pr (e)
properties did not exist, we could not speak of a way in which would be in-E(e, h)
dependent of considerations of prior plausibility of h.
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112 JONAH N. SCHUPBACH AND JAN SPRENGER

To see why the corollary follows from the theorem, let r be the posterior
ratio of the pair , and let r′ be the posterior ratio of the pair(e, h)

. Without loss of generality, assume . Then, for any functions′ ′ ′(e , h ) r 1 r
f and f ′ that satisfy CA1–CA4, we obtain the following inequalities:

′ ′ ′f(e, h) p g(r) 1 g(r ) p f(e , h )
′ ′ ′ ′ ′ ′ ′f (e, h) p g (r) 1 g (r ) p f (e , h ),

where the inequalities are immediate consequences of theorem 1. So any
f and f ′ satisfying CA1–CA4 always impose the same ordinal judgments,
completing the first stage of our analysis.

2.2. Uniqueness of . This section pursues the second task of choosingE
a specific and suitably normalized measure of explanatory power out of
the class of ordinally equivalent measures determined by CA1–CA4. To
begin, we introduce an additional, purely formal requirement of our mea-
sure:

CA5 (Normality and Form): Measure is the ratio of two functionsE
of , , , and , each of whichPr (e ∧ h) Pr (¬e ∧ h) Pr (e ∧ ¬h) Pr (¬e ∧ ¬h)
are homogeneous in their arguments to the least possible degree

.10k ≥ 1

Representing as the ratio of two functions serves the purpose of nor-E
malization. The terms , , andPr (e ∧ h) Pr (¬e ∧ h) Pr (e ∧ ¬h) Pr (¬e ∧ ¬h)
fully determine the probability distribution over the truth-functional com-
pounds of e and h, so it is appropriate to represent as a function ofE
them. Additionally, the requirement that our two functions be “homog-
enous in their arguments to the least possible degree ” reflects ak ≥ 1
minimal and well-defined simplicity assumption akin to those advocated
by Carnap (1950) and Kemeny and Oppenheim (1952, 315). This as-
sumption effectively limits our search for a unique measure of explanatory
power to those that are the most cognitively accessible and useful.

Of course, larger values of indicate greater explanatory power of h withE
respect to e. Measure ’s maximal value, , indicates the point atE E(e, h) p 1
which explanans h fully explains its explanandum e, and ( ’sE(e, h) p �1 E
minimal value) indicates the minimal explanatory power for h relative to
e (where h provides a full explanation for e being false). The neutral point
at which h lacks any explanatory power whatever relative to e is repre-
sented by .E(e, h) p 0

While we have provided an informal description of the point at which
should take on its neutral value 0 (when h lacks any explanatory powerE

10. A function is homogeneous in its arguments to degree k if its arguments all have
the same total degree k.
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LOGIC OF EXPLANATORY POWER 113

whatever relative to e), it is still left to us to define this point formally.
Given our notion of explanatory power, a complete lack of explanatory
power is straightforwardly identified with the scenario in which h does
nothing to increase or decrease the degree to which e is surprising. Prob-
abilistically, in such cases, h and e are statistically irrelevant to (indepen-
dent of) one another:

CA6 (Neutrality): For explanatory hypothesis h, if andE(e, h) p 0
only if .Pr (h ∧ e) p Pr (h) # Pr (e)

The final adequacy condition requires that the more h explains e, the
less it explains its negation. This requirement is appropriate given that
the less surprising (more expected) the truth of e is in light of a hypothesis,
the more surprising (less expected) is e’s falsity. Corollary 1 and neutrality
provide a further rationale for this condition. Corollary 1 tells us that

should be maximal only if . Importantly, in such a case,E(e, h) Pr (eFh) p 1
, and this value corresponds to the point at which this samePr (¬eFh) p 0

corollary demands to be minimal. In other words, given corollaryE(¬e, h)
1, we see that takes its maximal value precisely when takesE(e, h) E(¬e, h)
its minimal value and vice versa. Also, we know that andE(e, h) E(¬e, h)
should always equal zero at the same point given that Pr (h ∧ e) p

if and only if . The formalPr (h) # Pr (e) Pr (h ∧ ¬e) p Pr (h) # Pr (¬e)
condition of adequacy that most naturally sums up all of these points is
as follows.

CA7 (Symmetry): .E(e, h) p �E (¬e, h)

These three conditions of adequacy, when added to CA1–CA4, con-
jointly determine a unique measure of explanatory power as stated in the
following theorem (proof in app. B).11

Theorem 2. The only measure that satisfies CA1–CA7 is

Pr (hFe) � Pr (hF¬e)E(e, h) p .
Pr (hFe) � Pr (hF¬e)

Remark. Since, for ,Pr (hF¬e) ( 0

Pr (hFe) � Pr (hF¬e) Pr (hFe)/ Pr (hF¬e) � 1
p ,

Pr (hFe) � Pr (hF¬e) Pr (hFe)/ Pr (hF¬e) � 1

it is easy to see that is indeed an increasing function of the posteriorE
ratio.

11. There is another attractive uniqueness theorem for . It can be proven that isE E
also the only measure that satisfies CA3, CA5, CA6, CA7, and corollary 1, although
we do not include this separate proof in this article.
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114 JONAH N. SCHUPBACH AND JAN SPRENGER

Thus, these conditions provide us with an intuitively grounded, unique
measure of explanatory power.12

3. Theorems of . We have proposed the above seven conditions of ad-E
equacy as intuitively plausible constraints on a measure of explanatory
power. Accordingly, the fact that these conditions are sufficient to deter-
mine already constitutes a strong argument in this measure’s favor.E
Nonetheless, we proceed in this section to strengthen the case for byE
highlighting some important theorems that follow from adopting this
measure. Ultimately, the point of this section is to defend further our
assertion that is well behaved in the sense that it gives results that matchE
our clear intuitions about the concept of explanatory power, even in one
case where other proposed measures fail to do so.13

3.1. Addition of Irrelevant Evidence. Good (1960) and, more recently,
McGrew (2003) both explicate h’s degree of explanatory power relative
to e in terms of the amount of information concerning h provided by e.
This results in the following intuitive and simple measure of explanatory
power:14

Pr (eFh)
I(e, h) p ln .[ ]Pr (e)

According to this measure, the explanatory power of explanans h must
remain constant whenever we add an irrelevant proposition e′ to explan-
andum e (where proposition e′ is irrelevant in the sense that it is statistically
independent of h in the light of e):

12. Measure is closely related to Kemeny and Oppenheim’s (1952) measure of “fac-E
tual support” F. In fact, these two measures are structurally equivalent; however,
regarding the interpretation of the measure, is with h and e reversed (hE(e, h) F(h, e)
is replaced by e, and e is replaced by h).

13. Each of the theorems presented in this section can and should be thought of as
further conditions of adequacy on any measure of explanatory power. Nonetheless,
we choose to present these theorems as separate from the conditions of adequacy
presented in section 2 in order to make explicit which conditions do the work in giving
us a unique measure.

14. Good’s measure is meant to improve on the following measure of explanatory
power defined by Popper (1959): . It should be noted[Pr (eFh) � Pr (e)]/[Pr (eFh) � Pr (e)]
that Popper’s measure is ordinally equivalent to Good’s in the same sense that isE
ordinally equivalent to the posterior ratio . Thus, the problem wePr (hFe)/ Pr (hF¬e)
present here for Good’s measure is also a problem for Popper’s.
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LOGIC OF EXPLANATORY POWER 115

′ ′Pr (e ∧ e Fh) Pr (e Fe ∧ h) Pr (eFh)′I(e ∧ e , h) p ln p ln′ ′[ ] [ ]Pr (e ∧ e ) Pr (e Fe) Pr (e)
′Pr (e Fe) Pr (eFh) Pr (eFh)

p ln p ln p I(e, h).′[ ] [ ]Pr (e Fe) Pr (e) Pr (e)

This is, however, a very counterintuitive result. To see this, consider
the following example: let e be a general description of the Brownian
motion observed in some particles suspended in a particular liquid, and
let h be Einstein’s atomic explanation of this motion. Of course, h con-
stitutes a lovely explanation of e, and this fact is reflected nicely by measure
I:

Pr (eFh)
I(e, h) p ln k 0.[ ]Pr (e)

However, take any irrelevant new statement e′ and conjoin it to e; for
example, let e′ be the proposition that the mating season for an American
green tree frog takes place from mid-April to mid-August. In this case,
measure I judges that Einstein’s hypothesis explains Brownian motion to
the same extent that it explains Brownian motion and this fact about tree
frogs. Needless to say, this result is deeply unsettling.

Instead, it seems that, as the evidence becomes less statistically relevant
to some explanatory hypothesis h (with the addition of irrelevant prop-
ositions), it ought to be the case that the explanatory power of h relative
to that evidence approaches the value at which it is judged to be explan-
atorily irrelevant to the evidence ( ). Thus, if , then thisE p 0 E(e, h) 1 0
value should decrease with the addition of e′ to our evidence: 0 ! E(e ∧

. Similarly, if , then this value should increase with′e , h) ! E (e, h) E(e, h) ! 0
the addition of e′: . And finally, if , then′0 1 E(e ∧ e , h) 1 E (e, h) E(e, h) p 0
this value should remain constant at . Measure gives these′E(e ∧ e , h) p 0 E
general results as shown in the following theorem (proof in app. C):

Theorem 3. If —or equivalently,′ ′Pr (e Fe ∧ h) p Pr (e Fe) Pr (hFe ∧
—and , then:′ ′e ) p Pr (hFe) Pr (e Fe) ( 1

• if , then ,′Pr (eFh) 1 Pr (e) E(e, h) 1 E (e ∧ e , h) 1 0
• if , then , and′Pr (eFh) ! Pr (e) E(e, h) ! E (e ∧ e , h) ! 0
• if , then .′Pr (eFh) p Pr (e) E(e, h) p E (e ∧ e , h) p 0

3.2. Addition of Relevant Evidence. Next, we explore whether is wellE
behaved in those circumstances in which we strengthen our explanandum
by adding to it relevant evidence. Consider the case in which h has some
explanatory power relative to e so that (i.e., h has any degreeE(e, h) 1 �1
of explanatory power relative to e greater than the minimal degree). What
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116 JONAH N. SCHUPBACH AND JAN SPRENGER

should happen to this degree of explanatory power if we gather some new
information e′ that, in the light of e, we know is explained by h to the
worst possible degree?

To take a simple example, imagine that police investigators hypothesize
that Jones murdered Smith (h) in light of the facts that Jones’s fingerprints
were found near the dead body and Jones recently had discovered that
his wife and Smith were having an affair (e). Now suppose that the in-
vestigators discover video footage that proves that Jones was not at the
scene of the murder on the day and time that it took place (e′). Clearly,
h is no longer such a good explanation of our evidence once e′ is added;
in fact, h now seems to be a maximally poor explanation of precisely′e ∧ e
because of the addition of e′ (h cannot possibly explain because e′′e ∧ e
rules h out entirely). Thus, in such cases, the explanatory power of h
relative to the new collection of evidence should be less than that′e ∧ e
relative to the original evidence e; in fact, it should be minimal with the
addition of e′. This holds true in terms of , as shown in the followingE
theorem (proof in app. D):

Theorem 4. If and (in which case, it also′E(e, h) 1 �1 Pr (e Fe ∧ h) p 0
must be true that ), then .′ ′Pr (e Fe) ( 1 E(e, h) 1 E (e ∧ e , h) p �1

Alternatively, we may ask what intuitively should happen in the same
circumstance (adding the condition that h does not have the maximal
degree of explanatory power relative to e—i.e., ) but where theE(e, h) ! 1
new information we gain e′ is fully explained by h in the light of our
evidence e. Let h and e be the same as in the above example, and now
imagine that investigators discover video footage that proves that Jones
was at the scene of the murder on the day and time that it took place
(e′). In this case, h becomes an even better explanation of the evidence
precisely because of the addition of e′ to the evidence. Thus, in such cases,
we would expect the explanatory power of h relative to the new evidence

to be greater than that relative to e alone. Again, agrees with our′e ∧ e E
intuition here (proof in app. D):

Theorem 5. If and h does not already fully explain e′0 ! Pr (e Fe) ! 1
or its negation ( ) and , then′0 ! Pr (eFh) ! 1 Pr (e Fe ∧ h) p 1 E(e, h) !

.′E (e ∧ e , h)

While these last two theorems are highly intuitive, they are also quite
limited in their applicability. Both theorems require in their antecedent
conditions that one’s evidence be strengthened with the addition of some
e′ that is itself either maximally or minimally explained by h in the light
of e. However, our intuitions reach to another class of related examples
in which the additional evidence need not be maximally or minimally
explained in this way. In situations in which h explains e to some positive
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LOGIC OF EXPLANATORY POWER 117

degree, it is intuitive to think that the addition of any new piece of evidence
that is negatively explained by (made more surprising by) h in the light
of e will decrease h’s overall degree of explanatory power. Similarly, when-
ever h has some negative degree of explanatory power relative to e, it is
plausible to think that the addition of any new piece of evidence that is
positively explained by (made less surprising by) h in the light of e will
increase h’s overall degree of explanatory power. These intuitions are
captured in the following theorem of (proof in app. D):E

Theorem 6. If , then if , then′ ′E(e, h) 1 0 Pr (e Fe ∧ h) ! Pr (e Fe) E(e ∧
. Alternatively, if , then if′ ′e , h) ! E (e, h) E(e, h) ! 0 Pr (e Fe ∧ h) 1

, then .′ ′Pr (e Fe) E(e ∧ e , h) 1 E (e, h)

4. Conclusions. Above, we have shown the following: first, is a memberE
of the specific family of ordinally equivalent measures that satisfy our
first four adequacy conditions. Moreover, among the measures included
in this class, itself uniquely satisfies the additional conditions CA5–CA7.E
The theorems presented in the last section strengthen the case for byE
showing that this measure does indeed seem to correspond well and quite
generally to many of our clear explanatory intuitions. In light of all of
this, we argue that is manifestly an intuitively appealing formal accountE
of explanatory power.

The acceptance of opens the door to a wide variety of potentiallyE
fruitful, intriguing further questions for research. Here, we limit ourselves
to describing very briefly two of these projects that seem to us to be
particularly fascinating and manageable with in hand.E

First, measure makes questions pertaining to the normativity of ex-E
planatory considerations much more tractable, at least from a Bayesian
perspective. Given this probabilistic rendering of the concept of explan-
atory power, one has a new ability to ask and attempt to answer questions
such as, “Does the ability of a hypothesis to explain some known fact
itself constitute reason in that hypothesis’s favor in any sense?” or, re-
latedly, “Is there any necessary sense in which explanatory power is tied
to the overall probability of an hypothesis?” Such questions call out for
more formal work in terms of attempting to show whether, and howE
closely, might be related to . This further work would haveE(e, h) Pr (hFe)
important bearing on debates over the general normativity of explanatory
power; it would also potentially lend much insight into discussions of
Inference to the Best Explanation and its vices or virtues.

Second, we have presented and defended here as an accurate nor-E
mative account of explanatory power in the following sense: in the wide
space of cases in which our conditions of adequacy are rationally com-
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118 JONAH N. SCHUPBACH AND JAN SPRENGER

pelling and intuitively applicable, one ought to think of explanatory power
in accord with the results of . However, one may wonder whether peopleE
actually have explanatory intuitions that accord with this normative mea-
sure. With in hand, this question becomes quite susceptible to furtherE
study. In effect, the question is whether is, in addition to being anE
accurate normative account of explanatory power, a good predictor of
people’s actual judgments of the same. This question is, of course, an
empirical one and thus requires an empirical study into the degree of fit
between human judgments and theoretical results provided by . Such aE
study could provide important insights both for the psychology of human
reasoning and for the philosophy of explanation.15

Appendix A: Proof of Theorem 1 and Corollary 1

Theorem 1. All measures of explanatory power satisfying CA1–
CA4 are monotonically increasing functions of the posterior ratio

.Pr (hFe)/ Pr (hF¬e)

Proof. , , and jointly determine the probabilityPr (hFe) Pr (hF¬e) Pr (e)
distribution of the pair , so we can represent as a function of(e, h) E
these values: there is a such that3g : [0, 1] r � E(e, h) p g(Pr (e),

.Pr (hFe), Pr (hF¬e))
First, note that whenever the assumptions of CA3 are satisfied

(i.e., whenever is independent of all e, , and ), the followingh h e ∧ h2 1 1

equalities hold:

Pr (h ∧ h Fe) p Pr (h Fh ∧ e) Pr (h Fe) p Pr (h ) Pr (h Fe)1 2 2 1 1 2 1

Pr (h ∧ h ∧ ¬e) Pr (h ∧ h ) �Pr (h ∧ h ∧ e)1 2 1 2 1 2Pr (h ∧ h F¬e) p p (A1)1 2 Pr (¬e) Pr (¬e)

Pr (h ) �Pr (h ∧ e)1 1p Pr (h ) p Pr (h ) Pr (h F¬e).2 2 1Pr (¬e)

Now, for all values of , we can choose propositionsc, x, y, z � (0, 1)
e, , and and probability distributions over these such that theh h1 2

independence assumptions of CA3 are satisfied, and ,c p Pr (h )2

, , and . Due to CA1, we canx p Pr (e) y p Pr (h Fe) z p Pr (h F¬e)1 1

always find such propositions and distributions so long as is ap-E

15. This second research project is, in fact, now underway. For a description and report
of the first empirical study investigating the descriptive merits of (and other candidateE
measures of explanatory power), see Schupbach (forthcoming).
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LOGIC OF EXPLANATORY POWER 119

plicable. The above equations then imply that andPr (h ∧ h Fe) p cy1 2

. Applying CA3 ( ) yieldsPr (h ∧ h F¬e) p cz E(e, h ) p E (e, h ∧ h )1 2 1 1 2

the general fact that

g(x, y, z) p g(x, cy, cz). (A2)

Consider now the case that entails e; that is,¬h Pr (eF¬h) p
. Assume that could be written as a functionPr (hF¬e) p 1 g(7, 7, 1)

of alone. Accordingly, there would be a functionPr (e) h : [0, 1] r �

such that

g(x, y, 1) p h(x). (A3)

If we choose , it follows from equationsy p Pr (hFe) ! Pr (hF¬e) p z
(A2) and (A3) that

y
g(x, y, z) p g(x, , 1) p h(x). (A4)z

In other words, g (and ) would then be constant on the triangleE
for any fixed . Now, since{y ! z} p {Pr (hFe) ! Pr (hF¬e)} x p Pr (e)

g is an analytic function (due to CA1), its restriction (forg(x, 7, 7)
fixed x) must be analytic as well. This entails in particular that if

is constant on some nonempty open set , then it is2g(x, 7, 7) S O R
constant everywhere:

1. All derivatives of a locally constant function vanish in that
environment (Theorem of Calculus).

2. We write, by CA1, as a Taylor series expanded aroundg(x, 7, 7)
a fixed point :(y*, z*) � S p {y ! z}

� j1 � �
g(x, y, z) p (y � y*) � (z � z*) g(x, y*, z*) .� ( )[ ]j! �y �zjp0 ypy*,zpz*

Since all derivatives of in the set are zero,g(x, 7, 7) S p {y ! z}
all terms of the Taylor series, except the first one ( )g(x, y*, z*)
vanish.

Thus, must be constant everywhere. But this would violateg(x, 7,7)
the statistical relevance condition CA2 since g (and ) would thenE
depend on alone and not be sensitive to any form of statisticalPr (e)
relevance between e and h.

Thus, whenever entails e, either depends on its second¬h g(7, 7, 1)
argument alone or on both arguments. The latter case implies that
there must be pairs and with such′ ′ ′ ′(e, h) (e , h ) Pr (hFe) p Pr (h Fe )
that

′ ′ ′g(Pr (e), Pr (hFe), 1) ( g(Pr (e ), Pr (h Fe ), 1). (A5)
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120 JONAH N. SCHUPBACH AND JAN SPRENGER

Note that if , we obtainPr (eF¬h) p 1

Pr (e) p Pr (eFh) Pr (h) � Pr (eF¬h) Pr (¬h)

p Pr (hFe) Pr (e) � (1 � Pr (h)) (A6)

1 � Pr (h)
p ,

1 � Pr (hFe)

and so we can write as a function of and .Pr (e) Pr (h) Pr (hFe)
Combining (A5) and (A6), and keeping in mind that g cannot

depend on alone, we obtain that there are pairs andPr (e) (e, h)
such that′ ′(e , h )

′1 � Pr (h) 1 � Pr (h )
g , Pr (hFe), 1 ( g , Pr (hFe), 1 .( ) ( )1 � Pr (hFe) 1 � Pr (hFe)

This can only be the case if the prior probability ( and ,′Pr (h) Pr (h )
respectively) has an impact on the value of g (and thus on ), inE
contradiction with CA4. Thus, equality in (A5) holds whenever

. Hence, cannot depend on both argu-′ ′Pr (hFe) p Pr (h Fe ) g(7, 7, 1)
ments, and it can be written as a function of its second argument
alone.

Thus, for any , there must be a ′ 2Pr (hFe) ! Pr (hF¬e) g : [0, 1] r �

such that

Pr (hFe)E(e, h) p g(Pr (e), Pr (hFe), Pr (hF¬e)) p g Pr (e), , 1( )Pr (hF¬e)

Pr (hFe)′p g , 1 .( )Pr (hF¬e)

This establishes that is a function of the posterior ratio if h and eE
are negatively relevant to each other. By applying analyticity of E
once more, we see that is a function of the posterior ratioE

in its entire domain (i.e., also if e and h are positivelyPr (hFe)/ Pr (hF¬e)
relevant to each other or independent).

Finally, CA2 implies that this function must be monotonically
increasing since, otherwise, explanatory power would not increase
with statistical relevance (of which the posterior probability is a mea-
sure). Evidently, any such function satisfies CA1–CA4. QED

Corollary 1. Measure takes maximal value if and only if hE(e, h)
entails e and minimal value if and only if h implies .¬e

Proof. Since is an increasing function of the posterior ratioE
, is maximal if and only if . DuePr (hFe)/ Pr (hF¬e) E(e, h) Pr (hF¬e) p 0
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LOGIC OF EXPLANATORY POWER 121

to the regularity of , this is the case if and only if entailsPr (7) ¬e ¬
, in other words, if and only if h entails e. The case of minimalityh

is proven analogously. QED

Appendix B: Proof of Theorem 2 (Uniqueness of )E

Theorem 2. The only measure that satisfies CA1–CA7 is

Pr (hFe) � Pr (hF¬e)E(e, h) p .
Pr (hFe) � Pr (hF¬e)

Let , , , andx p Pr (e ∧ h) y p Pr (e ∧ ¬h) z p Pr (¬e ∧ h) t p Pr (¬
with . Write (by CA5).e ∧ ¬h) x � y � z � t p 1 E(e, h) p f(x, y, z, t)

Lemma 1. There is no normalized function of degree 1f(x, y, z, t)
that satisfies our desiderata CA1–CA7.

Proof. If there were such a function, the numerator would have the
form . If e and h are independent, the numeratorax � by � cz � dt
must vanish, by means of CA6. In other words, for those values of

, we demand . Below, we list four dif-(x, y, z, t) ax � by � cz � dt p 0
ferent realizations of that make e and h independent,(x, y, z, t)
namely, (1/2, 1/4, 1/6, 1/12), (1/2, 1/3, 1/10, 1/15), (1/2, 3/8, 1/14, 3/
56), and (1/4, 1/4, 1/4, 1/4). Since these vectors are linearly indepen-
dent (i.e., their span has dimension 4), it must be the case that

. Hence, there is no such function of degree 1.a p b p c p d p 0
QED

Lemma 2. CA3 entails that for any value of ,b � (0, 1)

f(bx, y � (1 � b)x, bz, t � (1 � b)z) p f(x, y, z, t). (B1)

Proof. For any , we choose e, such thatx, y, z, t h1

x p Pr (e ∧ h ) y p Pr (e ∧ ¬h )1 1

z p Pr (¬e ∧ h ) t p Pr (¬e ∧ ¬h ).1 1

Moreover, we choose a such that the antecedent conditions of CA3h2

are satisfied, and we let . Applying the independenciesb p Pr (h )2

between , e, and and recalling (A1), we obtainh h2 1

bx p Pr (h ) Pr (e ∧ h ) p Pr (h ) Pr (e) Pr (h Fe)2 1 2 1

p Pr (e) Pr (h ∧ h Fe) p Pr (e ∧ h ∧ h ),1 2 1 2

and similarly
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122 JONAH N. SCHUPBACH AND JAN SPRENGER

bz p Pr (¬e ∧ (h ∧ h )) y � (1 � b)z p Pr (¬e ∧ ¬(h ∧ h ))1 2 1 2

y � (1 � b)x p Pr (e ∧ ¬(h ∧ h )).1 2

Making use of these equations, we see directly that CA3—that is,
—implies equation (B1). QEDE(e, h ) p E (e, h ∧ h )1 1 2

Proof of Theorem 2 (Uniqueness of ). Lemma 1 shows that there isE
no normalized function of degree 1 that satisfies our de-f(x, y, z, t)
siderata. Our proof is constructive: we show that there is exactly one
such function of degree 2, and then we are done, due to the formal
requirements set out in CA5. By CA5, we look for a function of the
form

2 2 2 2ax � bxy � cy � dxz � eyz � gz � ixt � jyt � rzt � st
f(x, y, z, t) p . (B2)2 2 2 2¯ ¯ ¯ ¯¯ ¯ ¯ ¯ ¯ ¯ax � bxy � cy � dxz � eyz � gz � ixt � jyt � rzt � st

We begin by investigating the numerator.16 CA6 tells us that it has
to be zero if , in other words, ifPr (e ∧ h) p Pr (e) Pr (h)

x p (x � y)(x � z). (B3)

Making use of , we conclude that this is the casex � y � z � t p 1
if and only if :xt � yz p 0

xt � yz p x(1 � x � y � z) � yz
2p x � x � xy � xz � yz

p x � (x � y)(x � z).

The only way to satisfy the constraint (B3) is to set and toe p �i
set all other coefficients in the numerator to zero. All other choices
of coefficients do not work since the dependencies are nonlinear.
Hence, f becomes

i(xt � yz)
f(x, y, z, t) p .2 2 2 2¯ ¯ ¯ ¯¯ ¯ ¯ ¯ ¯ ¯ax � bxy � cy � dxz � eyz � gz � ixt � jyt � rzt � st

Now, we make use of corollary 1 and CA7 in order to tackle the
coefficients in the denominator. Corollary 1 (maximality) entails that

if , and CA7 (symmetry) is equivalent tof p 1 z p 0

f(x, y, z, t) p �f(z, t, x, y). (B4)

First, applying corollary 1 yields 2 ¯¯1 p f(x, 0, 0, t) p ixt/(ax � ixt �

16. The general method of our proof bears resemblance to Kemeny and Oppenheim’s
(1952) theorem 27. However, we would like to point out two crucial differences. First,
we use more parsimonious assumptions, and we work in a different—non-Carnapian—
framework. Second, their proof contains invalid steps, e.g., they derive by meansd p 0
of symmetry (CA7) alone. (Take the counterexample 2f p (xy � yz � xz � z )/(xy �

, which even satisfies corollary 1.) Hence, our proof is truly original.2yz � xz � z )
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LOGIC OF EXPLANATORY POWER 123

, and by a comparison of coefficients, we get and2¯ ¯ ¯st ) a p s p 0
. Similarly, we obtain and from¯ ¯ ¯ ¯i p i c p g p 0 e p i 1 p

, combining cor-2 2¯ ¯ ¯f(x, 0, 0, t) p �f(0, t, x, 0) p ixt/(ct � ext � gx )
ollary 1 with CA7 (i.e., eq. [B4]).

Now, f has the form

i(xt � yz)
f(x, y, z, t) p .¯ ¯ ¯ ¯bxy � dxz � i(xt � yz) � jyt � rzt

Assume now that . Let . We know by corollary 1 thatj̄ ( 0 x, z r 0
in this case, . Since the numerator vanishes, the denominatorf r 1
must vanish too, but by it stays bounded away from zero,j̄ ( 0
leading to a contradiction ( ). Hence, . In a similar vein,¯f r 0 j p 0
we can argue for by letting and for by letting¯ ¯b p 0 z, t r 0 r p 0

(making use of [B4] again: ).x, y r 0 �1 p f(0, 0, z, t)
Thus, f can be written as

i(xt � yz) (xt � yz)
f(x, y, z, t) p p , (B5)¯ ¯dxz � i(xt � yz) (xt � yz) � axz

by letting .¯a p d/i
It remains to make use of CA3 in order to fix the value of . Seta

in (B1) and make use ofb p 1/2 f(x, y, z, t) p f(bx, (1 � b)x �
(lemma 2) and the restrictions on f captured iny, bz, (1 � b)z � t)

(B5). By making use of (B1), we obtain the general constraint

xt � yz x(z/2 � t) � z(x/2 � y)
p

xt � yz � axz x(z/2 � t) � z(x/2 � y) � axz/2

xt � yz
p . (B6)

xt � yz � xz(2 � a)/2

For (B6) to be true in general, we have to demand that a p 1 �
, which implies that . Hence,a/2 a p 2

xt � yz x(t � z) � z(x � y)
f(x, y, z, t) p p ,

xt � yz � 2xz x(t � z) � z(x � y)

implying

Pr (e ∧ h) Pr (¬e) � Pr (¬e ∧ h) Pr (e)E(e, h) p
Pr (e ∧ h) Pr (¬e) � Pr (¬e ∧ h) Pr (e)

Pr (hFe) � Pr (hF¬e)
p , (B7)

Pr (hFe) � Pr (hF¬e)

which is the unique function satisfying all our desiderata. QED
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124 JONAH N. SCHUPBACH AND JAN SPRENGER

Appendix C: Proof of Theorem 3

Theorem 3. If —or equivalently,′ ′Pr (e Fe ∧ h) p Pr (e Fe) Pr (hFe ∧
—and , then:′ ′e ) p Pr (hFe) Pr (e Fe) ( 1

• if , then ,′Pr (eFh) 1 Pr (e) E(e, h) 1 E (e ∧ e , h) 1 0
• if , then , and′Pr (eFh) ! Pr (e) E(e, h) ! E (e ∧ e , h) ! 0
• if , then .′Pr (eFh) p Pr (e) E(e, h) p E (e ∧ e , h) p 0

Proof. Since and the posterior ratioE(e, h) r(e, h) p Pr (hFe)/ Pr (hF¬
are ordinally equivalent, we can focus our analysis on that quantity:e)

′r(e, h) Pr (hFe) Pr (hF¬(e ∧ e ))
p #′ ′r(e ∧ e , h) Pr (hF¬e) Pr (hFe ∧ e )

′1 � Pr (e) Pr (eFh) 1 � Pr (e Fe ∧ h) Pr (eFh)
p # # ′Pr (e) 1 � Pr (eFh) Pr (e Fe ∧ h) Pr (eFh)

′Pr (e ∧ e )
# (C1)′1 � Pr (e ∧ e )

′1 � Pr (e) 1 � Pr (e Fe) Pr (eFh)
p # ′1 � Pr (eFh) 1 � Pr (e) Pr (e Fe)

′ ′1 � Pr (e) Pr (e Fe) Pr (eFh) � (Pr (e) � Pr (eFh) Pr (e Fe))
p .′ ′1 � Pr (e) Pr (e Fe) Pr (eFh) � (Pr (eFh) � Pr (e) Pr (e Fe))

This quantity is greater than one if and only if the numerator exceeds
the denominator, that is, if and only if

′ ′0 ! (Pr (eFh) � Pr (e) Pr (e Fe)) � (Pr (e) � Pr (eFh) Pr (e Fe))
′ ′p Pr (eFh)(1 � Pr (e Fe)) � Pr (e)(1 � Pr (e Fe)) (C2)

′p (Pr (eFh) � Pr (e))(1 � Pr (e Fe)),

which is satisfied if and only if and not satisfied oth-Pr (eFh) 1 Pr (e)
erwise. Thus, (and ) if and only′ ′r(e, h) 1 r(e ∧ e , h) E(e, h) 1 E (e ∧ e , h)
if . The other two cases follow directly from (C2).Pr (eFh) 1 Pr (e)

It remains to show that and always have the′E(e, h) E(e ∧ e , h)
same sign. This follows from the fact that

′ ′Pr (e ∧ e Fh) Pr (e Fe ∧ h) Pr (eFh) Pr (eFh)
p p .′ ′Pr (e ∧ e ) Pr (eFe ) Pr (e) Pr (e)

Thus, h is positively relevant to e if and only if it is positively relevant
to . By CA2 and CA6, this implies that if and′ ′(e ∧ e ) E(e ∧ e , h) 1 0
only if and vice versa for negative relevance. QEDE(e, h) 1 0
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Appendix D: Proofs of Theorems 4–6

Theorem 4. If and (in which case, it also′E(e, h) 1 �1 Pr (e Fe ∧ h) p 0
must be true that ), then .′ ′Pr (e Fe) ( 1 E(e, h) 1 E (e ∧ e , h) p �1

Proof. Under the assumptions of theorem 1, by application of Bayes’s
Theorem,

′ ′Pr (h) Pr (e ∧ e Fh) Pr (h) Pr (e Fe ∧ h) Pr (eFh)′Pr (hFe ∧ e ) p p p 0.′ ′Pr (e ∧ e ) Pr (e ∧ e )

Thus,
′E(e ∧ e Fh) p �1 ! E(e, h).

QED

Theorem 5. If and h does not already fully explain e′0 ! Pr (e Fe) ! 1
or its negation ( ) and , then′0 ! Pr (eFh) ! 1 Pr (e Fe ∧ h) p 1 E(e, h) !

.′E (e ∧ e , h)

Proof. Note first that
′ ′Pr (e ∧ e Fh) p Pr (e Fe ∧ h) Pr (eFh) p Pr (eFh). (D1)

Analogous to theorem 3, we prove this theorem by comparing the
posterior ratios and and applying equation (D1):′r(e, h) r(e ∧ e , h)

′r(e, h) Pr (hFe) Pr (hF¬(e ∧ e ))
p #′ ′r(e ∧ e , h) Pr (hF¬e) Pr (hFe ∧ e )

′ ′1 � Pr (e) Pr (eFh) 1 � Pr (e ∧ e Fh) Pr (e ∧ e )
p # # #′ ′Pr (e) 1 � Pr (eFh) Pr (e ∧ e Fh) 1 � Pr (e ∧ e )

′1 � Pr (e) Pr (e ∧ e )
p # ′Pr (e) 1 � Pr (e ∧ e )

′ ′Pr (e ∧ e ) � Pr (e) Pr (e ∧ e )
p ′Pr (e) � Pr (e) Pr (e ∧ e )

! 1

since, by assumption, . This implies′ ′Pr (e ∧ e ) p Pr (e) Pr (e Fe) ! Pr (e)
that . QED′E(e, h) ! E (e ∧ e , h)

Theorem 6. If , then if , then′ ′E(e, h) 1 0 Pr (e Fe ∧ h) ! Pr (e Fe) E(e ∧
. Alternatively, if , then if′ ′e , h) ! E (e, h) E(e, h) ! 0 Pr (e Fe ∧ h) 1

, then .′ ′Pr (e Fe) E(e ∧ e , h) 1 E (e, h)
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Proof. First, we note that if , then also′ ′Pr (e Fe ∧ h) ! Pr (e Fe) Pr (e ∧
. Then we apply the same′ ′ ′e Fh) p Pr (e Fe ∧ h) Pr (eFh) ! Pr (e Fe) Pr (eFh)

approach as in the previous proofs:
′ ′r(e, h) 1 � Pr (e) Pr (eFh) 1 � Pr (e ∧ e Fh) Pr (e ∧ e )

p # # #′ ′ ′r(e ∧ e , h) Pr (e) 1 � Pr (eFh) Pr (e ∧ e Fh) 1 � Pr (e ∧ e )

′ ′1 � Pr (e) Pr (eFh) 1 � Pr (e Fe) Pr (eFh) Pr (e Fe) Pr (e)
1 # # #′ ′Pr (e) 1 � Pr (eFh) Pr (e Fe) Pr (eFh) 1 � Pr (e Fe) Pr (e)

′1 � Pr (e) 1 � Pr (eFh) Pr (e Fe)
p # ′1 � Pr (eFh) 1 � Pr (e Fe) Pr (e)

′ ′1 � Pr (e) Pr (e Fe) Pr (eFh) � (Pr (e) � Pr (eFh) Pr (e Fe))
p .′ ′1 � Pr (e) Pr (e Fe) Pr (eFh) � (Pr (eFh) � Pr (e) Pr (e Fe))

This is exactly the term in the last line of (C1). We have already
shown in the proof of theorem 3 that this quantity is greater than 1
if and only if (i.e., if ). This suffices to provePr (eFh) 1 Pr (e) E(e, h) 1 0
the first half of theorem 6. The reverse case is proved in exactly the
same way. QED
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