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Abstract

Inductive logic generalizes the idea of logical entailment and provides standards for
the evaluation of non-conclusive arguments. A main application of inductive logic
is the generalization of observational data to theoretical models. In the empirical
sciences, the mathematical theory of statistics addresses the same problem. This
paper argues that there is no separable purely logical aspect of statistical inference
in a variety of complex problems. Instead, statistical practice is often motivated by
decision-theoretic considerations and resembles empirical science.

1 Inductive Logic

Deductive logic explicates the notion of a valid argument and develops a for-
malism how to discern walid inferences — inferences that preserve truth in
passing from the premises to the conclusions. Then the premises logically en-
tail the conclusion. Hence, deductive logic studies principles and criteria of
truth-preserving inference. It is a formal science in the sense that the meaning
of the symbols does not affect soundness or validity of the conclusions.

Inductive logic tries to generalize the idea of logical entailment to inferences
where the truth of the premises does not guarantee the truth of the conclu-
sions. Still, the truth of the premises might indicate the truth of the conclusion,
and it is the point of inductive logic to make the vague and informal notion of
truth-indication more precise (Hawthorne 2005). The central concepts become
confirmation and evidential support: it is not asked whether the premises log-
ically entail the conclusion but whether they give good reasons to assert the
conclusion and to which degree they support it. In particular, inductive logic
is supposed to quantify the effects of observation and measurement on the
epistemic status of general hypotheses and theories. Most empirical sciences
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infer from data to general hypotheses, and as deductive relations between the-
ory and evidence seldom hold, the degree of support is of particular interest.
There inductive logic comes into play, figuring out which hypotheses are best
confirmed by the data.

Usually, inductive reasoning in science proceeds along the lines of the mathe-
matical theory of probability. A probabilistic entailment has the general form

T Oy (1)

where 1 and ¢; denote sentences of a given language and y and x; denote the
corresponding probabilities. In particular, y denotes the posterior probability
which the premises — sentences with a given probability — impose on the con-
clusion.! Bayesian inference is naturally embedded into such a framework:
Bayes’ theorem computes the (posterior) probability of a hypothesis H con-
ditional on evidence E from the prior probability of H and the likelihood of
E under the competing hypotheses:

P(H)P(E|H)

" P(H)P(E|H) + (1 — P(H)) P(E|-H) (2)

wew () := P(H|E) =

The probabilities are interpreted epistemically, i.e. as rational degrees of belief.
Hence, Bayesian updating is a special case of probabilistic inference, describing
the transformation of subjective degrees of belief in the light of incoming
evidence. When applying Bayesianism to modeling confirmation in science,
external factors as the practical consequences of a fallacious inference are
left out. That might be relevant to an inductive decision theory, but not to
inductive logic and inductive inference. Inductive logic aims at isolating the
logical part of inductive reasoning from pragmatic or decision-theoretic factors,
in the very same way that is characteristic of deductive logic. Proposals along
these lines were recently made by Howson (2003) and Fitelson (2005).

The impact of observation on scientific hypotheses is the core topic of statis-
tical science. In the quantitative sciences, inductive inference is often tanta-
mount to statistical inference. The latter comprises pattern detection as well
as model building, hypothesis testing and many other forms of inference. To
quote a famous statistician, “the theory of statistics deals in principle with
the general concepts underlying all aspects of such work [analysis and inter-
pretation of data]”.? Statistical tools often differ from the tools of inductive
logic by their higher mathematical sophistication. But the main difference
between Bayesian inductive logic and Bayesian statistics seems to be the dif-
ferent tradition of the two fields: Confirmation theory and inductive logic

1 See also the work of Hailperin (1996) and members of the PROGIC research
group (e.g. Haenni et al. 2008). In their description, the z; and y can also denote

interval-valued probabilities.
2 Cox (2006, xiii).



were mainly developed in logic and philosophy departments whereas statistics
emerged from mathematics and the empirical sciences (e.g. the pioneer statis-
tician R. A. Fisher was a leading geneticist, too). Therefore it is tempting
to forge tighter links between inductive logic and statistical inference. Most
prominently, the steady rise of subjective Bayesian inference within statistics
speaks for such a close connection. Refining the pioneer work of Carnap (1962)
and Hintikka (1966), this project was further pursued by many Bayesians in
the field, e.g. Festa (1986, 1993) and more recently, Romeijn (2004, 2005).
They try to integrate Bayesian statistical inference — and statistics in general
— into the framework of a probabilistic inductive logic.

This paper is concerned with the scope of such unifying efforts in statistical
science. Do statistical arguments have a logical aspect which is clearly sepa-
rable from decision theory? Do they proceed along the lines of a probabilistic
inductive logic? A position which affirms both questions shall henceforth be
called the logical view of statistical inference. Apart from the aforementioned
authors, this position is most prominently articulated by Howson and Ur-
bach (2005) who argue for a Bayesian inductive logic as the best vehicle of
inductive reasoning in science. Indeed, a lot of frequentist procedures, i.e. pro-
cedures that are justified by means of their favorable long-run properties, can
be redescribed as Bayesian procedures with specific prior assumptions.® More
and more statisticians realize that the alleged objectivity of many frequentist
procedures falls prey to implicit prior assumptions that can be expressed in
Bayesian terms. With regard to model analysis, Howson and Urbach even
write:

“Unlike the hotchpotch of ad hoc and unjustifiable rules of inference that
constitute the classical approach, Bayes’s theorem supplies a single, uni-
versally applicable, well-founded inductive rule which answers what Brandt
calls the ‘most important [...] need for integration of [...] model fitting into
a coherent whole.” 7 4

Indeed, such a view seems to be attractive in virtue of current statistical prac-
tice. Especially in the social sciences, active researchers use statistics packages
like SPSS as a “black box” that gives generalizable results out of raw data
without further ado. Such mechanical procedures suggest that computer pro-
grams perform the “logical” part of statistical inference, transforming and
compressing data to a form where we can base actual decisions on them. In
such an image, any scientific expertise flows into the specification of prior
probabilities. Those recent developments seem to advocate the unification of
statistical techniques in the comprehensive framework of probabilistic logic,
or more specifically, of Bayesian reasoning. Statistical research could then be

3 Cf. Berger, Boukai and Wang (1997); Berger (2003).
4 Howson and Urbach (2005, 236).



described as a mutual adaption of formal theories of inference and statistical
practice.

I would like to point out the restrictions to which the logical view of statis-
tics is subjected. Taken as a description of the entire discipline of statistics,
it distorts a large part of the actual practice. Section 2 highlights the con-
straints to which the widely applied frequentist estimation is subjected. For
elementary problems, Bayesian estimation offers a way out of the problem,
but it relies on the “Perfect Model Scenario”: the assumption that the true
model is included in the set of candidate models. This assumption becomes
less plausible the more complex the situation gets, e.g. in a model selection
problem. Under these circumstances, Bayesian probabilities lose their usual
meaning as degrees of belief that a particular hypothesis is true, or so I argue
(cf. section 3). In particular, we need a new interpretation and justification of
Bayesian inference. Those problems of Bayesianism motivate the use of fre-
quentist techniques in complex model selection problems although or all the
more because such approaches are hardly separable from a decision-theoretic
analysis. Many frequentist techniques are highly sensitive to underlying as-
sumptions so that human expertise and scientific understanding are required
for a sensible implementation (cf. section 4). Consequently, I conclude that
statistics mainly addresses practical worries about using data in making deci-
sions, predicting events or describing the mechanisms of a system. More pre-
cisely, statistics contains a patchwork of different approaches. Choosing one
of them is highly sensitive to modeling assumptions, specification of goals,
error tolerance etc., and there are no conclusive arguments for a particular
method. Hence, comparison of different methods is only possible relative to
far-reaching assumptions, blurring the prospects for conceptual unification of
statistics. The way how genuinely scientific insights enter the statistical model
analysis suggests that statistics resembles an empirical science more than a
sophisticated inductive logic. This claim can be substantiated by the numeri-
cal turn in statistics: computer-based design of statistical methods and their
simulation-based evaluation become more and more important.

2 Parameter estimation

My first example deals with an elementary practice of statistics: parameter
estimation.® We assume that we have a family of statistical models M that are
parametrized by a parameter ¥ whose true value we do not know. An estimator
¥ is a function from the sample space — i.e. the set of possible observations — to
the domain of the parameter. This function J is interpreted as a guess about

> 1T do not give any references since the example is contained in many statistics
textbooks.



the true value of the parameter ¥ on the basis of the observations. When we
estimate the unknown parameter, we would like to get an estimate that is
in some sense close to the true value 9. In applied sciences, researchers use
a standard software like SPSS: for a given set of data, the program yields a
“best estimate” of the unknown parameter of interest. Put another way, after
feeding in the data together with a family of models we mechanically obtain
a best estimate of the parameter, together with some useful risk assessments.
Such procedures seem to be tailor-made for integration into the framework of
an inductive logic. I would like to stress, however, that the notion of a “best
estimate” is far more complicated than we are inclined to think and that a lot
of tacit assumptions are made when applying such a procedure. As always, an
example will do the best illustration job. Let’s begin with a frequentist analysis
of the problem because it is the standard method in statistics packages.

Suppose you take part in a TV show where ten random integer numbers
T1,...,T, are generated from the set {0,...,9}, ¥ € N.¢ Unfortunately, you
do not know the value of 1. The better your guess approximates the true value,
the more money are you are going to win. There are various reasonable ways to
proceed. First, the double of the mean of the ten numbers (J,(2) 1= 2/n'Y" ;)
gives an unbiased estimate of the true value ¢. In other words, 1 is centered
around the true value (E[J;] = ). But this property does not tell us how
strongly J; will deviate on average from v, i.e. we do not know the variance of
191. Hence, we cannot guarantee that 191 is a sensible estimator. For instance,
U1 could be either much greater or much smaller than 9 in a way that the
errors cancel out on average. Second, we could choose the maximum of the
ten numbers z1-z19 (Ua(z) := maxa;). This is the smallest value of ¢ that
is consistent with the data, and it makes the actually obtained result most
likely. Therefore, we call ¥y a mazimum likelihood estimator (MLE). There is,
however, an intuitively understandable drawback: for any large value of 1, the
maximum of the ten random numbers will almost always be smaller than ¥. In
other words: It is quite unlikely that the maximum will actually be attained
in a sample of ten random numbers. Hence, the estimator Uy systematically
underestimates the true value of 1.

These considerations highlight the drawbacks of both proposals, 9, and Js.
Still, we lack clear-cut criteria which of the two we ought to prefer. Not sur-
prisingly, the answer depends on what “sufficiently close to the true value”
means. Assume for example that the amount of money you can win roughly
decreases as a quadratical function of the distance between the estimated and
the true value. In order words, we assume a quadratic loss function. Then the

6 By a “random integer number”, I mean a random variable that is uniformly

distributed on {0, ...,9}.



estimator ought to minimize the mean quadratic error, i.e.
Q) = Ey[(V — )] (3)

(Note that this function typically depends on d). It can be shown that this
can be decomposed into a sum of two well-known quantities: the variance and
the square of the bias of the estimator (e.g. the difference between the mean
of the estimator and 9):

Q) =Ey[(d — 9)?]
— Ey[?] — Eg[9)? + Eg[J]? — 20Ey[0] + 0°
= Vy[d] — (Ey[D] — 9)? (4)

If we calculate the mean quadratic errors of our two tentative estimators, we
obtain

Q) =5 "
Q(Dq) = 2 2

(n+1)(n+ 2)19

which suggests that Dy is superior to V; for large values of n, in particular for
n = 10. But this does not imply that the maximum likelihood estimator Uy
is optimal — we have argued that it is biased. Indeed, we can show that both
estimators, 1 and ¥, are inferior to the estimator Js(z) := (n/(n—1)) max
which corrects the bias inherent in U, dependent on the sample size. U3 is
unbiased and has an expected quadratic loss of
Q) = (5)
Y n(n +2)
which is uniformly lower than the expected quadratic loss for both ¥ and Js.
It can even be shown that J is the (QQy-minimizing estimator among all unbi-
ased estimators, i.e. I3 is an efficient estimator. This example illuminates that
maximum likelihood estimators can be easily outperformed — their pleasant
properties for large samples (e.g. asymptotical efficiency) are not brought to
bear in the present case. But taking quadratic loss was not at all compulsory in
the present case — the Euclidean distance between estimated and true value of
¥ would also have been a reasonable loss measure. That would, however, have
yielded different results. More generally, there are lots of potential loss func-
tions which impose different orderings on the available estimation strategies.
This implies that “universal principles” like maximum likelihood estimation
or efficient estimation cannot guide parameter estimation under all circum-
stances. For every inference problem, we have to examine which loss function



best describes the specific situation — there is no simple epistemological recipe.
For instance, most treasuries in the world use conservative estimates of tax
revenues whereas climate policy might be based on pessimistic estimates, just
because the consequences of overly optimistic action could be devastating.
The choice of a loss function is a delicate and non-trivial endeavor which
crucially affects the mathematical methods which we apply to determine the
best estimator. Of course, it has become conventional to focus on quadratic
losses because this is a plausible assumption for many estimation problems
and because there exists a full-fledged mathematical theory scrutinizing this
particular loss function. But this does not entail that )y or any other mathe-
matically beautiful loss function should be regarded as a distinguished measure
of verisimilitude of point estimators.” Some measures may be more tractable
and intuitive than others, but the remaining class is still large enough and
there is no cogent point in favor of one of these measures apart from purely
practical considerations. Estimation problems cannot be described as purely
epistemic problems because any metric for measuring “verisimilitude” — the
distance between estimated and true value — is conventional. The only way
to make sense of a loss function consists in the translation of a mathematical
distance into practical, possibly pecuniary losses. In other words, frequentist
estimation theory is not separable from a decision-theoretic analysis. The loss
function affects whether principles as efficient estimation can be trusted or
should be dismissed. Hence, when statistics books advocate a particular esti-
mation method, they make context-sensitive points. Generally, estimators are
not comparable in terms of truthlikeness, but only in terms of adequacy for a
certain question.

According to the logical view of statistical inference, there is, however, a purely
logical aspect of point estimation. Bayesian estimation theory purports to
solve the problem — we assign a prior distribution over the potential values of
¥ which we subsequently transform into a posterior distribution. This distri-
bution summarizes our total evidence — prior beliefs as well as learning from
data — and serves as the sole input to the decision-theoretic analysis. In the TV
show example, we would assign a prior distribution over the natural numbers
(recall that ¥ € N) and update it on any incoming random number z;. Hence,
the proper logical part of statistical inference seems to be independent of the
loss function. At first sight, this step seems to solve the problem, but assigning
reasonable prior probabilities is far from trivial. We may be more or less igno-
rant about the probable range of 1, and eliciting a reasonable subjective prior
distribution may be impossible.® Lacking any further evidence about ¥, the

7 A measure of verisimilitude that corresponds to Euclidean distance is adopted by
Festa (1986, 277-279), but he does not give any reason apart from tractability and
intuitive plausibility (Festa 1993, 38-40).

8 Of course, we could recourse to objective prior distributions, but then it is ques-
tionable we still perform a genuine subjective Bayesian analysis. It is sometimes ar-



assignment of prior beliefs about the value of ) is probably neither sensible
nor sufficiently motivated. Again, the TV show example may serve as an illus-
tration. Thus, the Bayesian approach involves a substantial idealization with
regard to the assignment of prior probabilities. Still, there is a distinct logical
aspect in Bayesian estimation. I do not want to admit, however, that this is
generalizable to more complex problems. This will come out more clearly in
the next section.

3 Bayesian model selection

A lot of the modern debate in statistics and applied sciences focuses on the
issues of model selection — how to filter a set of candidate models as to obtain
a predictively successful and explanatorily helpful model. To select a model
which can be used in further study of the phenomena is such an important
decision that we ought to treat it as an integral part of statistical inference.
Model selection thus involves the fitting of models to empirical data as well
as decisions on the complexity of the model and finding the causally relevant
factors. A suitable selection strategy has to evaluate the model selection un-
certainty, i.e. to account for the problem that the same data which are used
for selecting a model family are also used for fitting the model and estimating
the parameters which leads to undue optimism towards the selected model.
This problem, sometimes also called selection bias, is a serious problem for
statistical inference:

“Statisticians admit this privately, but they(we) continue to ignore the dif-
ficulties because it is not clear what else could or should be done.” ?

To base statistical inference on several sensible candidate models is a natural
attempt to mitigate the problem. This is the rationale of model averaging:
Instead of using a single fitted model as the basis of statistical inference, the
inference is based on an average of all candidate models. Assume, for instance,
that ¢ is a quantity of interest and that 1§k is the estimator of ¥ in a model M,
where My, ..., M, denote the candidate models. Instead of selecting a specific
value of k, model averaging assigns weights p; to any estimator U so that the
model-averaged estimator of ¢ takes the form

Tg = Z pkﬁk (6>
k=1

gued that as a matter of fact, objective priors tend to minimize risk (cf. Williamson
2007), but this is the very kind of decision-theoretic argument that proponents of
the logical view of statistics should avoid.

9 Chatfield (1995, 421).



By avoiding the selection of a single model, the problem of selection bias seems
to be circumvented. However, it is not clear how to assign the weights p,. We
might set up a loss function that measures the goodness of ¥ so that the es-
timation problem becomes an optimization problem over the range of the p.
Apart from the fact that such an analysis poses serious computational prob-
lems, it again entangles statistical inference and decision-theoretic analysis.
This is exactly what proponents of the logical view of statistics would oppose
to. For them, it would be more natural to calculate a posterior distribution
over the quantity of interest . Therefore they normally adhere to Bayesian
model averaging and assign prior degrees of belief to the candidate models
M. Then, the distribution of 9 given the data x can be decomposed into

P(0]z) = Z P(3 My, ) P(My|2) (7)

where the terms on the right hand side are calculated according to Bayes’
theorem. We interpret P(¢|z) as the posterior distribution of the quantity
of interest, thus separating the logical and the decision-theoretic part of the
analysis.

The main virtues of the Bayesian approach consist in conceptual simplicity
and unification since Bayes’ theorem offers a simple roadmap to the most prob-
able model. Moreover, averaging future predictions by means of the posterior
distribution reduces the model selection bias, i.e. the risk that the most prob-
able model is overrepresented in future applications (Kass and Raftery 1995;
Wasserman 2000). Other Bayesian approaches to model selection and model
averaging include a Laplace approximation of the term log P(F|H) in Bayes’
theorem, the so-called Bayesian Information Criterion (BIC, Schwarz 1978).
Yet another strategy examines which models are favored by the data by means
of intrinsic or fractional Bayes factors. ! Most of these approaches have to rely
on a prior distribution which may be hard to elicit. How to proceed in the face
of ongoing uncertainty about prior weights is the subject of serious statistical
research — see Hoeting et al. (1999, 390) for an overview. But that is not the
main problem. In Bayesian model analysis we make the general assumption
that a true model exists and that it is included in the set of candidate mod-
els. Then, it is the goal to pick out the models which are most probable a
posteriori. But the claim that models are literally true in science can often be
doubted, with consequences for the entire Bayesian approach. For instance,
all models have a finite number of components whereas the true model is of
infinite order and thus never included in the set of candidate models. Fur-
thermore, scientific modeling necessarily involves some idealization or neglect
of external factors so that we cannot speak of literally true models. Bayesian
model averaging mitigates this criticism because several different models are
taken into account, thus decreasing the risk of being utterly mistaken. But the

10'See Berger and Perrichi (1996) for a description of this method.



principal problem remains. For example, when the goal is prediction in very
complex systems, the Bayesian assumption that the true model is included in
the set of candidate models is no longer tenable. Several mistaken predictions
need not average out — they might just all be completely wrong. This is es-
pecially salient in sciences as geophysics where it is common knowledge that
all suggested models are hopelessly wrong due to the enormous complexity of
the systems under investigation (e.g. the Earth climate). This is commonly
called the failure of the Perfect Model Scenario (cf. Smith 2003). Such a fail-
ure is especially plausible if the systems under study have nonlinear or even
chaotic character as it frequently occurs in geophysics. If we were to offer
bets according to the probabilities of our tentative models of Earth climate or
tectonic activity, we would lose money all the time. To make this clear, note
that we are actually restricting ourselves to a very small subset of the possible
Earth climate models, and it is very unlikely that the true model, granted
that it exists at all, is included in this tiny subspace. Therefore the results
of Bayesian updating should not necessarily lead to confidence in the most
probable model: The relative superiority of a particular model does not make
up an argument for truth. We might answer, of course, that a Bayesian does
not aim at literal truth, but at “truth up to a reasonable degree of approxi-
mation”. This move does not help either because we lack a definite metric for
deciding when a false model is sufficiently close to the true model in order to
count as “approximately true”. We encounter the same problem as in section
2: there is no distinct measure of verisimilitude and “closeness to the true
value”. Moreover, even “approximate truth” may be impossible to achieve.
The attractiveness of the Bayesian approach in philosophy of science largely
turns on results as the Gaifman-Snir theorem (Gaifman and Snir 1982) — if the
true model is among the candidate models and certain regularity conditions
hold, the posterior probability of the true model will eventually converge to
1. But in most real-world situations, those idealized conditions do not apply.
(Compare that to the TV show example where we know that some natural
number corresponds to the true value of J!) So how shall we justify a Bayesian
approach to the model selection problem? I believe that we should adopt an
instrumental justification: First, under specific circumstances, Bayesian model
selection may select those models that minimize a certain discrepancy mea-
sure to the true model — more on that in section 4. Second, the model which
is favored by a Bayesian model selection procedure may be the best game in
town in so far as it is likely to yield the most accurate predictions among all
candidate models. Hence, Bayesian model selection tells us which models we
should work with and not which models we shall believe. The prior probabil-
ities to the candidate models merely mirror our expectations which of them
will perform best for the specific purpose. Working with the “most probable
model” is often more likely to minimize actual, real-world losses, thus forging
a link to an socioeconomic analysis. Smith (2003) writes:

“It is easily observed that many talented meteorologists dismiss the idea of
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a two-way exchange with socioeconomics out of hand. They state, rather
bluntly, that meteorologists should stick to the ‘real science’ of modeling the
atmosphere |[...]. Interestingly, if only coincidentally, these same scientists are
often those most deeply embedded within PMS.” 11

In such a socioeconomic approach, we focus on the probabilities of observable,
economically relevant events that the models try to predict. This is indeed
the approach advertised in Roulston et al. (2003) — the agent has to choose
between the different forecasts which are obtained from different information
consolidation strategies. Then, the agent prices the value of the strategies by
means of Monte Carlo resampling from the empirical distribution. Due to the
natural connection to decision and expected utility theory, such an analysis
could be equally performed in Bayesian terms. Of course, the fact that some
models yield better predictions than others does not entail that they should be
trusted. But preferring the predictions of a certain model to the predictions of
another model may be justified even when we know that all models are wrong
because we are interested in their relative real-world value. Here, I do not
argue against Bayesian model analysis as a statistical technique, but against
an overoptimistic interpretation as the “logic” of statistical inference.

A Bayesian model analysis may have other benefits, too. When we have very
large amounts of data and a corresponding number of degrees of freedom, most
candidate models will be predictively accurate. The differences between rela-
tively complex and relatively simple models will not be found in the predictive
performance but in terms of interpretability: A more parsimonious model is
explanatorily more valuable because the salient dependencies among the vari-
ables are picked out. When all models perform decently in terms of prediction,
we would like to select a model that correctly identifies the relevant causal
variables and contributes to our scientific understanding. > Both theory and
simulation results indicate that many Bayesian model selection methods as the
BIC tend to underfit the true model. In other words, there is a systematical
bias in favor of simple and easily interpretable models. So simple models may
be favored over complex models although they generally fit the data worse.
Besides, complex models are more likely to include spurious covariates. To
summarize, Bayesian model selection and Bayesian model averaging are use-
ful tools in statistical model analysis. However, Bayesian probabilities cannot
be understood naively, as degrees of belief that a certain model is actually
true. This assumption is often untenable in real science. Instead, we better
interpret them in an instrumental way — as indicating the relative weight of
models when it comes to an evaluation of their predictions. Since PMS of-
ten fails, there is no unified logic of statistical model analysis which Bayesian
reasoning could reveal, thus falsifying the logical view of statistics. The next

1 Smith (2003, 236).
12 Cf. Burnham and Anderson (1998, 171-173).
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section introduces alternatives.

4 Model selection: information criteria

The previous section has pointed out virtues and vices of the Bayesian ap-
proach to model selection. That gives us a reason to have a closer look at
classical frequentist techniques, in particular at the various information crite-
ria that generalize the principle of maximum likelihood estimation. Maximum
likelihood estimators have several good properties when the sample size in-
creases, e.g. they are asymptotically unbiased, efficient and normal (cf. section
2). In other words, they satisfy several desirable conditions when they are gen-
erated by a “very large” amount of data. However, it is not clear how to best
apply MLE principles to the problem of model selection. Typically, there are
several families of parameterized models with a different degree of complex-
ity. The overall selection error of a model selection criterion consists of two
components: the approrimation error — the error in the selection of a spe-
cific model family — and the estimation error — the error in fitting the model
parameters to the data. Simple MLE estimation advocates the selection of a
complex model because the existence of a lot of parameters helps to improve
the fit to the data. However, it can be shown that “variance [of an estimator]
is directly related to [model] complexity, being far greater for complex models
than for simple ones” '3 : Complex models tend to absorb random noise during
the parameter fitting process. In other words: if the models are too complex,
the parameter values carry little information because the estimation error be-
comes too big (cf. Zucchini 2000). Hence, a naive application of maximum
likelihood principles does not deserve consideration. Therefore, many statisti-
cians pursue a different approach: they choose a function that measures the
discrepancy between the true and the candidate model. They impose the single
constraint on the true model that it exists somewhere “out there” and that
it generates the observed data. Then, they search for the candidate model
that minimizes the expected discrepancy to the true model in the same way
that a point estimate is supposed to minimize the distance to the true value.
These model selection criteria constitute the family of the minimum total dis-
crepancy (MTD) criteria. The choice of the metric introduces a conventional
element, but most frequently, the discrepancy is measured by means of the
Kullback-Leibler (K-L) divergence '

Hr.0) = [ ftaox (1) o )

9o ()
13 Myung (2000, 195).

4 This quantity is also called K-L discrepancy, K-L distance, K-L information or
relative entropy.
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where the integral is taken over the entire sample space and ¥ is the (usually
multidimensional) parameter of the approximating model or candidate model
g. The standard motivation for using K-L divergence stems from coding the-
ory: H describes the expected loss in transmitting data when an approximat-
ing distribution g is used instead of the true distribution f.' log[f(z)/gs ()]
measures the information loss between f and gy for any data point z, and av-
eraging the loss according to f(z) (the relative frequency of a datum z) yields
the expected information loss.® In fact, the Kullback-Leibler divergence is
mathematically tractable and has an enormous significance in the theory of
statistics.

The attentive reader will have noticed that in (8), g is not a single model.
Rather, it denotes a family of models which are indexed by the parameter .
This mirrors that the candidate models have to be fitted to the data during
the model analysis. The point of the MTD criteria is to minimize K-L diver-
gence between the true model f and a family of candidate models gy. Thus, it
is important how to choose the parameter 19, and this is the point where the
maximum likelihood principle comes in: we estimate 9 by the maximum like-
lihood estimate 9 and then, we try to minimize the estimated K-L divergence
H(f,g), where ¥ is estimated from the actual data y.

1(f.9)= [ fla)log ( ) ) &

gﬁ(y)@)
:/f(x) logf(x)dx—/f(:v) loggqg(y)(x)dx 9)

In a comparison of different candidate models, the first term drops out since it
merely depends on the true model f. In other words: When we want to compare
the estimated Kullback-Leibler divergence of different candidate models, it is
sufficient to focus on the second term in (9). The mutual first terms will
cancel out and can be neglected for the purpose of model comparison. In other
words: We are less interested in the absolute distance between candidate and
true model than in the relative truth-distance of the miscellaneous candidate
models. This corresponds to our practical worry to select the relatively best
candidate model, regardless of whether it is indeed close to the true model (cf.
section 3).

The MLE 9)(y) is based on the actual data. However, it is sensible to average
over the sampling distribution in order to eliminate the sampling error: If
Y(y) is based on unrepresentative data y, the estimated K-L divergence will

15 Cf. Kullback and Leibler (1951); Shannon and Weaver (1949).

16 Note that the Kullback-Leibler divergence is not symmetric — it would not make
sense to average the loss according to the approximating density instead of the true
density.
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not be close to the true divergence. So, eliminating the sampling error helps
to improve the predictive performance of the selected model. Hence,

~EyE: g g5, @)] = = [ 1) ([ £(@) og g, (0)dz ) dy  (10)

plus a constant describes the expected estimated Kullback-Leibler divergence
between f and g. Now, it might look tempting to estimate (10) by means
of the log-likelihood of the actual data under g. Here, Akaike’s fundamental
contribution comes in: He managed to show that if the set of approximating
(candidate) models contains the true model, the bias of the log-likelihood as
an estimator of the expected estimated K-L discrepancy asymptotically cor-
responds to the number of estimable parameters K of the model family ¢:

AlC(g,y) == —log gy, (y) + K(g) (11)

is an asymptotically unbiased estimator of (10).7

Akaike’s result forges a link between the method of maximum likelihood es-
timation and model selection by means of minimizing K-L divergence. This
approach is typical of the MTD criteria. Under which circumstances are we
allowed to rely on Akaike’s results? First, the method of information criteria
is relative to the set of families of candidate models over which the K-L dis-
crepancy is minimized. Without sound scientific judgment, we cannot specify
such a global model: Both taking too many and too few models into account
raises the probability of an erroneous selection. — Second, Kullback-Leibler
divergence can in principle be replaced by the Hellinger distance, the Gauss
distance, etc. The situation is analogous to the parameter estimation prob-
lem: goodness of a point estimator is relative to a loss function, goodness of
a model selection criterion is relative to a discrepancy function. Model se-
lection criteria are often tailor-made to a specific discrepancy measure. For
instance, the positive properties of Akaike’s selection criterion are all derived
for Kullback-Leibler divergence. Of course, Kullback-Leibler divergence is a
widely accepted and sensible measure of discrepancy for a variety of purposes,
but external circumstances might determine which discrepancy measure best
describes the actual inference problem. — Third, some MTD criteria tend to fo-
cus on the approximation error, e.g. AIC asymptotically eliminates the bias of
the MLE, but it scarcely addresses the estimation error. Take the phenomenon
of overfitting: If the selected model contained significantly more parameters
than the true model, the estimation error would become uncontrollable due
to variance explosion. Therefore it is important to check whether some in-
formation criteria are particularly prone to such errors and to identify the
circumstances that favor such errors. By means of theoretical results, simula-
tions and practice we can determine which criteria tend to overfit or underfit

17 Cf. Burnham and Anderson (1998, 43-48).
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the true model. By now, simulation, practice and theoretical considerations
all suggest that the AIC often chooses too complex models, in particular for
small samples. !® This reiterates a previously made point: Unbiasedness of an
estimator does not guarantee reliable behavior. It does neither control the
variance nor does it imply consistency, i.e. that the estimator converges to
the true value with increasing sample size. In our example, AIC is prone to
massive overfitting errors. Still, the AIC is of enormous practical value in a
variety of real problems and can be refined as to address the above problems.
The precise circumstances where AIC should be replaced by a “corrected”
version is the subject of a lot of statistical investigation. But in any case, it
is way too simplified to state that Akaike’s method of model selection gives a
general tradeoff between simplicity and data-model fit, as it is often done in
philosophy of science. ¥

Indeed, further refinements of the MTD idea address those problems. For in-
stance, Takeuchi generalized Akaike’s idea to the situation where the true
model is not part of the candidate models and the model families are non-
nested, obtaining the so-called Takeuchi Information Criterion (Takeuchi 1976).
This step was very important since the restriction that the true model be
among the candidate models is a very heavy one — compare the preceding sec-
tion. Bozdogan’s ICOMP criterion (Bozdogan 1988, 2000) is based on a more
general notion of model complexity, taking into account not only the num-
ber of parameters, but also parameter stability, random error structure, etc.
Theoretical results, however, are far too weak to guarantee the overall superi-
ority of a certain model selection criterion. Instead, computer simulations can
indicate how the criteria perform in practice. But even those simulations are
relative to a very specific choice of circumstances: the sample size, the number
of candidate model families, nested vs. non-nested models, etc. So the results
of simulations have to be analyzed with great care and caution.?’ The per-
formance of any criterion is relative to the specific circumstances and there is
no criterion which could claim general optimality. I believe that we can trace
back the lack of such a criterion to the fundamental problem of estimation
theory: the lack of a general, loss-independent best estimate. Although some
criteria (e.g. Bozdogan’s ICOMP) appear to be more generally applicable and
more stable than their competitors, it is not justified to conclude that they
are uniformly best among all MTD criteria. Therefore, a crucial task for the
practicing statistician consists in the deliberation which information criterion
might be most adequate for the specific circumstances and the specific goal of
inquiry. For instance, the tenability of the vital assumption that the candidate

18 Cf. Taper (2004, 497-500). Speaking about overfitting is meaningful when applied
to the AIC because in Akaike’s asymptotical analysis, the true model is a part of
the candidate model set.

19 Cf. Forster and Sober (1994).

20 Cf. Forster (2000, 202) and Myung (2000, 208).
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model is contained in the set of true models sensitively depends on the par-
ticular problem. So even if we agree on measuring loss between candidate and
true model by means of Kullback-Leibler divergence, there is still room for
disagreement on the model selection method. To resolve such a disagreement
requires insights from the underlying empirical science as well as mathematical
sophistication. In a manifold way, the needs and demands of the field of appli-
cation and the particularities of the observed data play a crucial role for the
model selection procedure. It goes without saying that these findings sharply
contradict the logical view of statistics. As the nature of those problems is
often quite messy, model selection seems to be closer to empirical science
than to inductive logic — we engage in a kind of empirically based engineering
work, including the difficult fine-tuning of model selection methods and spe-
cific problems. There is no unified scheme of translating scientific insights and
observed data to a final decision — a lot hinges on intermediate plausibility
arguments. Therefore we cannot neatly decompose MTD model selection into
sets of premises and conclusions which are connected by a unified logic of in-
ductive inference. It rather seems that the premises determine which method
of inference to apply. Since there is no universal recipe for solving those kind
of problems, the reader might by now understand why statistical modeling
and model analysis are thought to be an art as well as a science.

5 Model selection: Conclusions

The preceding investigations teach us that simulation- and practice-based eval-
uation of information criteria go hand in hand with theoretical considera-
tions. In other words: The theoretical properties which we can deduce about a
method, be it Bayesian or frequentist, do not decide alone over its adequacy.
There are a lot of different error types, and none of the available model selec-
tion criteria takes care of all of them. Instead, simulations that resemble typical
applications are used in order to study the properties of the proposed criterion.
They help us to see whether the criterion is sufficiently robust and applicable
in a variety of circumstances. In particular, it is important to check whether
the constraints given by the intended application are adequately transformed
to the parameters of the simulation (e.g. number of candidate models, linear-
ity, etc.). This evaluation of the model selection criteria has a quasi-empirical
character, and due to the increasing computer power, such approaches become
more and more popular. In particular, the results of the simulation analysis
can lead to the introduction of ad hoc information criteria that are adapted
to model selection under specific circumstances. 2!

It should be clear by now that a solution of the model selection problem is more

2L See the SIC(n) family in Taper (2004, 497-500).
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than the solution of an intricate mathematical problem. Human expertise is
required to decide which form of modeling is most appropriate. It is clear that
these priorities must be set by scientists, not by mathematicians. Only they
understand the objects of mathematical modeling sufficiently well to assess
the adequacy of a particular discrepancy function or the importance of model
parsimony in the relevant context. Bayesian model selection is exempted from
these reservations only in very idealized circumstances which seldom hold in
real science. Formal theories of inductive inference can thus be useful tools,
but ultimately, they remain just tools.

The results thus suggest a close collaboration between mathematically minded
statisticians and working scientists in order to find the most adequate model
selection method in a particular problem. Indeed, this is the route statistics
has taken in the last decade, with a lot of statistical literature stemming from
researchers that are not located in a mathematics or statistics department.
The increased interest in statistical methods among researchers whose primary
interests are outside mathematics and statistics shows that a crucial point
has been realized: In order to design efficient and helpful statistical methods,
scientific understanding and mathematical sophistication have to go hand in
hand.

6 Summary

In this paper, I do not argue that probabilistic logics in general and Bayesian
inductive logic in particular do not have value in statistics. Quite to the con-
trary, Bayesianism can be extremely useful. Instead, I am concerned with the
logical view of statistics that claims the existence of a clearly separable and
unified logic of inductive inference whose results serve as a basis for decision-
making. Nothing could be further from actual practice. The first case study
— parameter estimation — has highlighted some basic problems of frequentist
estimation: The quality of an frequentist estimate is relative to the choice of a
loss function. This might be resolved in a Bayesian framework, but the more
complex case of model selection illuminates problems of Bayesian inference
due to the collapse of the Perfect Model Scenario. Bayesian reasoning is then
best embedded into a decision-theoretic framework, thus dismissing the logical
view of statistical inference. The subsequent discussion of frequentist model
selection methods show that satisfactory inference methods are highly sensi-
tive to prior assumptions, goals of inference and substantial scientific insights
into the underlying process. Statistical methods are optimal only relative to
a variety of external, pragmatic factors: Which types of error do we want to
address? What are the practical consequences of a fallacious inference? What
is the structure of the random error? Do we have nested or non-nested, linear
or non-linear models? And so forth.
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It turns out to be impossible to make a neat separation between the logi-
cal and the decision-theoretic part in statistical inference. Statistics must not
be described as a branch of mathematics that miraculously transforms messy
data and vague assumptions into a trustworthy posterior distribution. This
would neglect the many uncertainties in the process. Instead, statistics seems
to be much closer to empirical work and scientific modeling: The most inter-
esting and fruitful questions about models in science deal with the interplay
of scientific inquiry and mathematical modeling. Being able to address such
questions with the help of statistical tools has yielded an incredible progress,
making statistics an indispensable part of empirical science. These questions
are beyond the realms of formal theories of inference as inductive logic.
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