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Abstract

This article motivates and discusses José Bernardo’s attempt to recon-
cile the subjective Bayesian framework with a need for objective scientific
inference, leading to a special kind of objective Bayesianism, namely ref-
erence Bayesianism. We elucidate principal ideas and foundational impli-
cations of Bernardo’s approach, with particular attention to the classical
problem of testing a precise null hypothesis against an unspecified alter-
native.

1 Introduction: A Stalemate Situation

The label “objective Bayesianism” sounds almost self-contradictory. Bayesian-

ism is a paradigm of inductive inference based on subjective degrees of beliefs,

and seems to be anything but an objective form of inference. Therefore, ob-

jective Bayesianism cannot mean to deny any subjective element in inductive

inference: rather, it aims at reconciling the subjective nature of Bayesianism

with the aim of scientific objectivity.

Among the many approaches that are devoted to this end (for discussion,

see Berger 2003; Mayo 2011), we focus on the reference Bayesian approach,

mainly developed by José Bernardo over the last 30 years. The goal of the ar-

ticle consists in identifying, in a non-technical manner, the main elements and

philosophical motivations of Bernardo’s approach, as well as potential points of

disagreement with subjective Bayesians and frequentists. We illustrate the im-

plications of the reference Bayesian approach in the classical problem of testing

a precise null hypothesis against an unspecified alternative.

In Bayesian inference, an agent’s degrees of belief in hypotheses and theories

conform to the axioms of probability. Beliefs are changed by Conditionalization,

according to Bayes’s theorem. In other words, Bayesianism is a theory of the

revision of degrees of belief: it represents learning from experience and making

inductive inferences as a rational belief updating process. The main require-

ments on that process are (1) that the function representing degrees of belief
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satisfy the axiom of probability functions and (2) that incoming evidence change

the agent’s degrees of belief in a hypothesis H according to Conditionalization

on the evidence E:

Pnew(H) := P (H|E) = P (H)
P (E|H)

P (E)
. (1)

Thus, the end product of Bayesian inference is a posterior distribution, which

represents our actual uncertainty after learning the evidence. The inferences

that we make, and the decisions that we take, qualify as rational because they

emerge as the result of a rational belief updating process.

However, it has been argued that scientific inference is very different from

idealized scenarios for reasoning under uncertainty, such as drawing balls from

an urn, or a game of chance, where Bayesian inference is obviously powerful.

Practical problems such as computational costs put aside, scepticism vis-à-vis

Bayesian methods in statistical inference can usually be traced to the following

roots:

1. Scientific hypotheses are either false or true. Presumably, it is the task

of science to state the evidence for a certain hypothesis, not to probabil-

ify those hypotheses and to report degrees of belief in their truth. This

way of thinking is typical of the frequentist approach in statistics, sub-

suming those ways of inference where probabilities are not interpreted as

degrees of belief, but as relative frequencies of the occurrence of an event.1

The intuition behind this objection is that science and statistics should

investigate objective relations between phenomena and theories, between

hypothesis and evidence.

2. Following up on the previous point, scientists often ask whether a cer-

tain hypothesis (e.g., X is independent of Y ) is compatible with a given

set of data, or whether a certain effect between quantities of interest

is present. This is the basic question of statistical hypothesis tests. A

Bayesian expresses this question by assuming a prior probability distri-

bution and computing a posterior, but that seems to answer a different

question. Moreover, it seems hard to convince a fellow scientist, a funding

agency or the Food and Drug Administration that strong evidence can be

counterbalanced by equally strong a priori “prejudices”.

3. According to standard Bayesian theory, any system of degrees of belief that

does not violate the axioms of probability and known empirical constraints

counts as rational. In practice, this leaves ample space for the assignment

of prior probabilities, and equally ample space for the resulting posteriors

on which we base our decisions. If the result of a Bayesian experiment

consists in a particular distribution of personal degrees of belief, what

normative force do these results carry?

1This includes the works of Fisher, Neyman and Pearson as well as the more recent error-
statistical approach of Mayo and Spanos (2006).
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The justifications for being a subjectivist usually pertain to the decision-theoretic

coherence of Bayesianism. Subjective Utility Theory, the dominant paradigm

in decision theory, bases one’s decisions on rational degrees of belief in various

states of the world. By construction, the Bayesian approach nicely hooks up

with decision theory. From the perspective of Expected Utility Theory, it can

then be argued that several frequentist procedures, such the impact of stop-

ping rules on inference, are decision-theoretically incoherent (e.g., Edwards et

al. 1963; Kadane et al. 1996; Sprenger 2009).

Moreover, frequentist measures of evidence, such as p-values/significance

levels, have been found to be poor measures of evidence in a variety of respects

(Berger and Sellke 1987): evidence often serves as a justification to disbelieve

or to give up a point hypothesis, but strong frequentist evidence such as a low

p-value is actually a very poor guide to disbelief and rejection. Typically, the

frequentist will overstate the evidence against the tested hypothesis compared

to a subjective Bayesian analysis.

On the other hand, these advantages of Bayesianism carry less weight in

circumstances where we cannot directly determine the material value of a right

or wrong decision, e.g., in theoretical branches of science (Fisher 1956). Bayesian

inference is basically a theory of what we should believe, and does not directly

address certain inferential questions, such as “what is the best estimate?”, or

“how strong is the evidence?”. But these are the questions that many scientists

are interested in.

So there seems to be a stalemate between the Bayesians, who are supported

by decision theory, and the frequentists, who are supported by accepted sci-

entific practice. Bernardo, who feels the pull of the arguments of either side,

opts for de-subjectivizing the Bayesian account while at the same time main-

taining its decision-theoretic foundation, which is arguably the greatest asset of

Bayesianism. Moreover, he aims at a unification of estimation and hypothesis

testing through a Bayesian lens. The next three sections expose the conceptual

foundations of Bernardo’s approach.

2 Intrinsic Loss Functions

One of the main problems of statistical inference is to estimate a quantity of

interest on the basis of data x. A Bayesian will (if she is an expected utility

maximizer) typically choose the Bayes estimator θ̃(x) for the loss function L(·, ·)
– the estimator that minimizes the expected loss on the basis of the posterior

distribution:

θ̃(x) = argminθ̂∈Θ

∫
Θ

L(θ̂, θ) p(θ|x) dθ (2)

For instance, if the loss function L is the familiar quadratic loss L(θ̂, θ) = (θ̂−θ)2,

then the Bayes estimator amounts to the mean of the posterior distribution, that

is: θ̃(x) =
∫

Θ
θ p(θ|x) dθ.

However, Bayes estimators are not invariant under one to one transforma-

tions of the parameter space. That is, if we want to estimate ψ = g(θ), it will
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not hold in general that

g̃(θ)(x) = g(θ̃(x)). (3)

This has some counterintuitive consequences: when we want, as good Bayesians,

to estimate the standard deviation of a random variable, then we cannot use

a Bayes estimate of the variance and take the square root. This number will

typically differ from a direct Bayes estimate of standard deviation, and vice

versa. In other words, using a Bayes estimate of a certain quantity (such as

variance) to infer to best estimates of other, canonically related quantities (such

as standard deviation) is, from a Bayesian perspective, incoherent. This may

be logical when we are dealing with monetary losses, but it is, according to Ber-

nardo, “rather difficult to explain when, as it is the case in theoretical inference,

we merely wish to report an estimate of some quantity of interest” (Bernardo

2011, 3), or in other words, when we are interested in the true value of θ.

The famous statistician R. A. Fisher made a similar point:

in the field of pure research, [...] no assessment of the cost of wrong

conclusions [...] can conceivably be more than a pretence, and in

any case such an assessment would be inadmissible and irrelevant in

judging the state of the scientific evidence. (Fisher 1935, 25–26)

In other words, the occurrence of loss functions in the Bayes estimator under-

mines the answer to a pure inferential problem, such as estimating the true value

of θ. Decision-theoretically motivated approaches, such as going for the Bayes

estimator, may be adequate for purposes of industrial quality control and the

like, but not always for quantifying scientific evidence.

Fisher’s criticism primarily aims at Neyman and Pearson’s behavioral fre-

quentist approach, but it equally applies to Bayesians since Bayes estimators

depend, in general, on the assumed loss function. Bernardo is, on that point,

in sync with Fisher, but the conclusions are different: unlike Fisher, he believes

that Bayesian inference can be rescued: for good estimation in theoretical sci-

ence, we have to work with loss functions that do not vary under one-to-one

transformations.

Take the simple case of estimating the value of a parameter θ and measuring

the loss that we suffer by working with θ0 instead of the true parameter value.

Bernardo recommends to switch from the distance between parameters to the

distance between models:

it may näıvely appear that was is required is just some measure

of discrepancy between θ0 and θ. However, since all parametriza-

tions are arbitrary, what is really required is some measure of the

discrepancy between the models labeled by θ0 and by θ. By construc-

tion, such a discrepancy measure will be invariant of the particular

parametrization used. (Bernardo 2011, 6, original emphasis)

Following a suggestion by Robert (1996), Bernardo names these loss functions

intrinsic since they measure the discrepancy between two probability models

instead of the discrepancy between parameter values. The former, but not the
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latter, are invariant under one-to-one reparametrization. A natural choice for

such a discrepancy measure between two distributions Pθ and Pθ0 with densi-

ties p(·|θ) and p(·|θ0) is their mutual Kullback-Leibler divergence (Kullback and

Leibler 1951) or relative entropy :

δ(Pθ, Pθ0) = min

(∫
X
p(x|θ) log

p(x|θ)
p(x|θ0)

dx;

∫
X
p(x|θ0) log

p(x|θ0)

p(x|θ)
dx

)
. (4)

This discrepancy is invariant under bijective transformations of the parame-

ter space since the parameters affect the discrepancy only via the probability

densities that they induce, which are independent of the particular parametriza-

tion.2 Of course, there are also other divergence measures between probability

distributions, but the logarithmic divergence is distinguished by a variety of the-

oretical virtues, and it has a straightforward anchoring in coding theory (Good

1952; Bernardo 1979b).

This particular loss function has, beside invariance, several other interesting

properties which have been explored by Bernardo in a series of papers over the

last 30 years. For example, it can also be calculated using a sufficient statistics

T (x) instead of the full data x. We skip the application-related developments,

and only mention that the loss function in (4) can be interpreted as the expected

minimal log-likelihood ratio in favor of the true model. Thus, the intrinsic

loss function does not only have the desired invariance property: also from a

frequentist point of view, it is related to relevant measures of evidence (e.g., in

the Neyman-Pearson Lemma).

3 Reference Priors

One of the biggest problem for the Bayesian consists in developing a sound and

practicable methodology for assigning prior distributions: “in many situations

however, either the available prior information on the quantity of interest is too

vague to warrant the effort required to formalize it, or it is too subjective to be

useful in scientific communication” (Bernardo 2011, 10).

The second pillar of Bernardo’s reference Bayesianism, next to the develop-

ment of invariant loss functions, consists in an appropriate choice of reference

prior distributions. While in classical, subjective Bayesianism, the prior dis-

tribution reflects one’s prior degrees of belief, a reference Bayesian recognizes

the difficulty of coming up with a meaningful subjective priors in a variety of

problems. Therefore she resorts to a conventional default choice.

Bernardo’s key idea for selecting such reference priors consists in maximizing

the information of the data, that is, in maximizing the information that the data

transmit about the parameter of interest. This idea is most easily illustrated in

a one parameter model M = {p(x|θ), θ ∈ Θ, x ∈ X}, with parameter space Θ

and sample space X . The information in the data is explicated as the expected

Kullback-Leibler discrepancy between the prior probability density p(θ) and the

2Taking the minimum is necessary since KL-divergence is not symmetric.
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posterior probability density p(θ|x) (Bernardo 1979a, 114-115):

IΘ(x, p(θ)) = Ex
[∫

Θ

p(θ|x) log
p(θ|x)

p(θ)
dθ

]
(5)

Now consider this quantity as the experiment is replicated an indefinite number

of times. Instead of a single realization x, we then deal with data x1, . . . , xk.

As k → ∞, the functional IΘ(xk, p(θ)) will approach the amount of informa-

tion about θ which is missing in the prior p(θ). The reference prior or “non-

informative” prior distribution is the probability distribution that maximizes

IΘ(xk, p(θ)) as k →∞, that is, that makes the data maximally informative.

In this construction, the reference prior depends on the particular model

that has been specified. For example, the reference prior over a finite sample

space is the uniform distribution, and the reference prior over a parameter

θ ∈ [0, 1] in a binomial model of the data will beBe(1/2, 1/2)-distributed (p(θ) ∝
1/
√
θ(1− θ)), whereas for the closely related Negative Binomial model, whose

only difference to the Binomial model concerns the sampling rule, the reference

prior will look differently.

It follows that inference (e.g., estimation) with reference priors leads to dif-

ferent answers, depending on which probability model we use. In particular,

inference depends on the sampling rule that has been used for obtaining a data

set, violating the Likelihood Principle (Berger and Wolpert 1984), one of the

core principles of subjective Bayesian inference. According to that principle,

all the information about θ obtainable from an experiment is con-

tained in the likelihood function Lx(θ) = P (x|θ) for θ given x. Two

likelihood functions for θ (from the same or different experiments)

contain the same information about θ if they are proportional to one

another (Berger and Wolpert 1984, 19)

This principle is violated in Bernardo’s objective Bayesianism since, as he frankly

admits, the inference depends via the reference priors on the specified proba-

bility model. Indeed, violation of the Likelihood Principle leads to counter-

intuitive consequences, similar to those that frequentists experience. Assume,

for instance, that we are repeating Bernoulli experiments until either a certain

number of successes (s = 10), or a certain number of trials (N = 100), has been

occurred. What should be our reference prior if we observe the 10th success on

the 100th repetition? The one for the Binomial distribution? The one for the

negative Binomial distribution? A mixture of both (Geisser 1984)?

Such observations highlight (i) that with respect to foundations, reference

Bayesians deviate substantially from orthodox subjective Bayesian inference,

and (ii) that they need a defence against the arguments that have been made

in favor of the Likelihood Principle. This is still an open topic of debate –

see the replies and rejoinder to Bernardo (2011). One answer could be that

reference priors are motivated by the desire to make the data as informative as

possible, compared to the information in the priors. “Information” is, in the

above definition, once again explicated by means of Kullback-Leibler divergence.

Reference priors are then referential, or so one could argue, because for an
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unbiased judgment in the absence of meaningful prior information, it is certainly

useful to start with as little information as possible, or to give as much weight

to the data as possible, and to minimize the impact of prior opinion. That is

the sense of default priors that reference priors explicate. One may disagree

about the adequacy of Bernardo’s specific proposal, but it remains a coherent

way of defining “noninformative priors” that does not appeal to philosophically

dubious symmetry and indifference principles.

Moreover, reference priors need not be understood as the solution to an

inference problem, but rather, as the name suggests, as a reference point against

which we can gauge the results of a subjective Bayesian analysis (cf. Bernardo

1997). Reporting a reference analysis alongside a subjective analysis enables

us to assess the strength of our subjective presumptions. So reference priors

can also be understood as a form of sensitivity analysis. When we are working

with subjective priors, we would like to know to what extent our conclusions are

sensitive to our choice of the prior. Understanding reference priors as a gauging

instrument for our subjective beliefs, as a possible common ground for debating

between statisticians with different opinions strips them off the ambition to

figure as uniquely rational degrees of belief.

Keeping this in mind, we can now proceed to the objective Bayesian’s ap-

proach to the problem of testing a point null hypothesis. After going through

that treatment, we will be in a better position to assess the overall merits and

drawbacks of the reference Bayesian approach.

4 Hypothesis Testing

One of the core ambitions of Bernardo’s reference Bayesianism is a unified

approach to hypothesis testing and estimation: where standard, subjective

Bayesian approaches to hypothesis testing make an accept/reject decision on

the basis of the consequences of a wrong decision, the reference Bayesian aims

at answering the question whether or not the parameter value θ0 is compatible

with the data (Bernardo 1999). These questions are different, and it is not clear

whether it even makes sense to ask the latter in a subjective Bayesian frame-

work – after all, there is no evidence independent of subjective belief. In the rest

of this section, we will elaborate the differences between classical frequentist,

subjective Bayesian and reference Bayesian methods regarding testing a point

null hypothesis for compatibility with the data.

We consider the standard problem of testing the mean of a normal distribu-

tion with known variance σ2, where the null has the form H0 : X ∼ N (θ0, σ
2),

and the alternative has the unspecified form H1 : X ∼ N (θ, σ2) with θ 6= θ0.

For large samples, a frequentist tester will reject the null hypothesis if the

absolute value of conventional deviance statistic z(X1, . . . , XN ) := (
∑
kXk −

Nθ0)/(
√
Nσ) exceeds a certain threshold. This practice is justified by the ob-

servation that z converges, due to the Central Limit Theorem, in distribution

to the standard Normal distribution N (0, 1). A frequentist significance tester

rejects the null if the results are “very unexpected” under H0, that is, if they
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are in the far tails of the distribution of z; otherwise, the null is judged to be

compatible with the data.3

A subjective Bayesian takes a different stance. This can be illustrated in the

asymptotic case N →∞. If we fix, for increasing sample size N , the significance

level of the data – and let the data be highly significant against the null –, then

the Bayes Factor in favor of the null (that is, the ratio of posterior and prior

odds) will exceed any bound, and the posterior probability of the null hypothesis

will converge to 1. This phenomenon, known as the the Jeffreys-Lindley paradox

(Lindley 1957) is remarkable because it shows a fundamental difference between

the type of results that a Bayesian and a frequentist obtain from their respective

data analysis.4 Formally:

Lindley’s Paradox: Take a Normal model N(θ, σ2) with known

variance σ2, H0 : θ = θ0, H1 : θ 6= θ0, assume p(H0) > 0 and any

regular proper prior distribution on {θ 6= θ0}. Then, for any testing

level α ∈ [0, 1], we can find a sample size N(α, p(·)) and independent,

identically distributed (i.i.d.) data x = (x1, . . . , xN ) such that

1. The sample mean x̄ is significantly different from θ0 at level α;

2. p(H0|x), that is, the posterior probability that θ = θ0, is at

least as big as 1− α. (cf. Lindley (1957, 187))

Thus, Bayesians contend that the value of z(x) is no reliable indication of

the tenability of the null hypothesis. This is not surprising: If we are testing the

null hypothesis “for real”, then we also assign a proper prior probability to H0.

That is, we give H0 a non-zero probability of being true, e.g., P (H0) = ε > 0 –

the precise value does not matter – with the remaining probability mass spread

out over the real line. In this case, it makes sense that “significant” results

nevertheless favor H0 over H1: For a “significant difference” between θ0 and

the averaged, variance-corrected sample mean z becomes the smaller, the more

N increases. In particular, this deviance will appear small compared to the

deviance to most of the hypotheses that are part of H1. In other words: as

soon as we take our priors seriously, as a honest expression of our subjective

uncertainty, it is clear that we will end up with results favoring θ0 over an

unspecified alternative. On that reading, the “paradox” just demonstrates that

statistical significance is a poor indicator of rational belief. Indeed, it sounds

absurd that minute deviations of the sample mean from θ0 provide significant

evidence against the null if the sample is just large enough!

However, the Bayesian has made a substantial presumption: namely that

we can assign a meaningful singular prior ε > 0 to the null hypothesis. But in

practice, this need not be the case. Consider testing the efficacy of a medical

drug, the palate of a wine taster, or the bias of a measuring instrument: there

3Of course, there are also more sophisticated approaches such as Mayo and Spanos’ (2006)
error-statistical approach, but a comparison of reference Bayesianism to their framework would
go beyond the scope of this article.

4True, the frequentist confidence interval around θ0 will become more and more narrow,
but for the moment, we would like to test the null hypothesis, not to find an interval estimate.
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is nothing that distinguishes θ0 (in terms of degrees of belief) from other values

of θ that are in its immediate neighborhood. Therefore a singular prior seems

inadequate. It is questionable whether such a subjective Bayesian analysis re-

ally answers the questions “can I use the parameter value θ0 as a proxy for the

unknown true value of θ?” or “are the data incompatible with θ = θ0”? Sub-

jective Bayesians presuppose that there is something special about the value of

θ0, but this will typically not be the case.5

Bernardo’s solution to this dilemma is arguably ingenious: he understands

a hypothesis testing problem as a proper decision problem where we decide

on whether or not to treat the data as generated by the null hypothesis θ =

θ0. In other words, the inferential problem becomes a decision problem where

the different options (accept/reject H0) are judged according to their expected

utilities. The utility of accepting H0 when it is wrong is, however, not given

externally, but quantified by means of the expected predictive score of using θ0

instead of the true value θ. This score is calculated by averaging the logarithmic

score (− log p(x|θ0)) over the sample space X .

Cutting short the technicalities here, Bernardo (1999) manages to show that

under these presumptions, the difference in expected utilities between accept-

ing and rejecting the null is (leaving nuisance parameters aside) essentially a

function of the term∫
δ0(Pθ0 , Pθ) =

∫
p(θ|x)

(∫
p(y|θ) log

p(y|θ)
p(y|θ0)

dy

)
dθ. (6)

In other words, the decision in a hypothesis testing problem depends, according

to Bernardo, on the data via the expected intrinsic loss (6), cf. equation (4).

Anticipating our final evaluation, we can see from (6) that Bernardo has accom-

plished an unified account of estimation and hypothesis testing: both treatments

crucially depend on the intrinsic loss or the intrinsic distance between the esti-

mated/hypothesized parameter value and the true parameter value.

Coming back to hypothesis testing proper, this Bayesian Reference Crite-

rion (BRC, Bernardo 1999, 108) allows for some interesting results. Assume,

for instance, that we are testing a subject that claims to possess extrasensory

capacities, namely to affect 0-1-outcomes generated by a randomly operating

machine by means of mysterious mental forces. Recording the number of zeros

and ones, we check whether there is a significant difference between them. For a

large sample, it turns out that there have been 52.263.471 zeros in 104.490.000

trials (Jahn et al. 1987). A proper Bayesian (Jefferys 1990) assigns a non-

zero probability to the null hypothesis and accepts this hypothesis for most

choices of prior probabilities over H1 (the Bayes factor is, for a typical choice,

about 19 in favor of H0). However, a reference Bayesian will conclude that

5It does not help either to cite the results of Berger and Delampady (1987). Their Theorem
1 demonstrates that the testing of a point null hypothesis with non-zero prior can be under-
stood as a convenient simplification of testing the null hypothesis |θ−θ0| ≤ ε for a small value
of ε, with a continuous, but rather sharply peaked prior. More precisely, the Bayes factors
in both testing problems can be related to each other. Unfortunately, this approximation
breaks down as N increases, making this justification unavailable to the subjective Bayesian
hypothesis tester in the situation of Lindley’s paradox.
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the expected loss from using θ0 as a proxy for the true value θ (=the expected

log-likelihood ratio against H0) is substantial, namely log 1400 ≈ 7.24. This is

in sync with the observation that any non-dogmatic prior yields the posterior

θ ∼ N(0.50018, 0.000049), where the low variance establishes that “under the

accepted conditions, the precise value θ0 = 1/2 is rather incompatible with the

data” (Bernardo 2011, 18). This does, of course, not prove the extrasensory

capacities of our subject; a much more plausible explanation is a small bias in

the random generator.

The crucial difference to a subjective, Bayes factor analysis is that the entire

space of alternatives is not integrated out. Recall that that analysis favored the

null over the alternative because it “defeated” all parameter values that were

far from θ0, irrespective of whether θ0 or a different value close to it was the

actual truth. Whereas the objective Bayesian restricts herself to pointing out

that the evidence against θ0 with respect to some other value is very strong.

In that sense, while avoiding the integrating-out or catch-all treatment that is

characteristic of subjective Bayesianism, the reference Bayesian approach is built

on very Bayesian grounds: namely maximizing Subjective Expected Utility.

The last section proposes some subjective Bayesian rejoinders to that view, and

summarize our findings.

5 Conclusion: A Critical Appraisal

This short paper has presented the three main elements of Bernardo’s reference

Bayesian approach: intrinsic loss functions for estimation, reference priors, and

a decision-theoretic, prediction-oriented access to hypothesis testing. Strictly

speaking, these elements are independent, but they fit into a coherent philosophy

of inference because they are related in a number of ways. For instance, the

(expected) logarithmic score − log p(·) is used in all three elements: it quantifies

missing information about θ, expected divergence between prior and posterior,

and predictive success of a hypothesis. Similarly, the intrinsic loss function for

estimation problems also figures in the Bayesian Reference Criterion (BRC) for

hypothesis testing.

How should we place this framework on a scale between Bayesian and fre-

quentist approaches? When stressing the difference between objective and sub-

jective Bayesianism, it should be noted that the reference prior approach does

not only provide a unified approach to testing and estimation problems: it also

lays a decision-theoretic foundation for testing point null hypotheses. Although

the test statistics are the same like in frequentist inference, making the method

attractive for a non-Bayesian as well, Bernardo’s method is distinguished by its

decision-theoretic foundation. This is a big asset vis-à-vis frequentist philoso-

phies of induction that are based on p-values or mathematical derivatives thereof

(Berger and Delampady 1987; Berger and Sellke 1987). Belief is now separated

from evidence. However, three fundamental challenges deserve mention. It

would go beyond the scope of the paper to try to answer them here; we direct

the interested reader to Bernardo (1999, 2011) and Lindley (1972).
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1. Does it really make sense to consider hypothesis testing problems as styl-

ized prediction problems? Is this really adequate and sufficiently general

for modeling inferences in theoretical science? Aren’t we reducing the

complexity of real hypothesis tests to a scheme that does not necessarily

fit them?

2. Lindley (1999) objects, in his discussion of Bernardo’s (1999) paper, that

a crucial advantage of Bayesianism gets lost in the Bernardian synthesis

of frequentist and Bayesian techniques: context-sensitivity. Compare the

testing of the efficacy of a new medical drug to the testing the extrasensory

capacities of an arbitrary subject. Clearly, we will be much more willing to

reject the null hypothesis (no efficacy) in the first case than in the second

case: quite often, new drugs turn out to be effective whereas if extrasen-

sory capacities really existed, we would probably have observed them in

previous experiments. A proper Bayesian would therefore, in the second

case, use a prior that is much more spiked around θ0 than in the second

case. The disadvantage of Bernardo’s approach is, according to Lindley,

that by the automatic use of the reference prior machinery, we deprive

ourselves of the chance to distinguish between those cases. We are dealing

with “Greek letters” and dismiss our foreknowledge and scientific judg-

ment. In his rejoinder, Bernardo (1999) proposes the use of appropriately

restricted reference priors to accommodate Lindley’s reservations.

3. The difference between statistical and scientific significance. Bernardo’s

conclusion that in the ESP example of the previous section, the null is in-

compatible with the data, might be true from a purely statistical point of

view. But scientifically, it seems that the data vindicate the null because

the observed effect is too small to be the product of interesting extrasen-

sory capacities. Probably it is just an artefact of the sampling device. The

question is then: what use does it have to say that the data are (statisti-

cally) incompatible with the null hypothesis when this does not help us to

decide whether or not we should see the null as (scientifically) confirmed?

Summing up, the gist of Bernardo’s reference Bayesianism is not to replace

subjective inference in science and statistics. Rather, it is an extension of the

Bayesian machinery to cases where a proper subjective analysis is not feasible for

whatever reasons. Independent of one’s stance towards this project, Bernardo

deserves credit for coming up with an account of reference priors that unifies

estimation and testing problems on information-theoretic and decision-theoretic

grounds, and that has been fruitfully applied to a variety of non-trivial statistical

problems.
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