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Motivation: The Discovery of the Higgs Particle

Bayesianism and frequentism are the two grand schools of statistical in-

ference, divided by fundamentally different philosophical assumptions and

mathematical methods. In a nutshell, Bayesian inference is interested in

the credibility of a hypothesis given a body of evidence whereas frequentists

focus on the reliability of the procedures that generate their conclusions.

More exactly, a frequentist inference is valid if in the long run, the un-

derlying procedure rarely leads to a wrong conclusion.

To better describe the scope and goals of these approaches, I follow Roy-

all (1997, 6) in his distinction of three main questions in statistical analysis

:

1. What should we believe?

2. What should we do?

3. When do data count as evidence for a hypothesis?

These questions are closely related, but distinct. Bayesians focus on the

first question—rational belief—because for them, scientific hypotheses are

an object of personal, subjective uncertainty. Therefore, Bayesian inference

is concerned with the question of how data should change our degree of

belief in a hypothesis. Consequently, Bayesians answer the second and third

question—what are rational decisions and good measures of evidence?—

within a formal model of rational belief provided by the probability calculus.

Frequentists are united in rejecting the use of subjective uncertainty in

the context of scientific inquiry. Still, they considerably disagree on the

foundations of statistical inference. Behaviorists such as Jerzy Neyman and

Egon Pearson build their statistical framework on reliable decision proce-

dures, thus emphasizing the second question, while others, such as Ronald

A. Fisher or Deborah Mayo, stress the relevance of (post-experimental) ev-

idential assessments.

The purpose of this article is to make the reader understand the prin-

ciples of the two major schools of statistical inference—Bayesianism and

frequentism—and to recognize the scope, limitations and weak spots of ei-

ther approach. Notably, the divergences between both frameworks can have

marked impacts on the assessment of scientific findings. On 4 July, 2012,

the CERN (European Center for Nuclear Research) at Geneva surprised the
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public by the announcement to have discovered the Higgs boson—a particle

in the Standard Model of modern physics, which had been searched for since

1964. Since the discovery of Higgs boson proved the existence of a particu-

lar mechanism for breaking the electroweak symmetry, the discovery was of

extreme importance for particle physics.

In the statistical analysis, the researchers at CERN reasoned in frequen-

tist spirit: under the assumption that the Higgs boson does not exist, the

experimental results deviate more than five standard deviations from the ex-

pected value. Since such an extreme result would occur by chance only once

in two million times, the statisticians (and the press department) concluded

that the Higgs boson had indeed been discovered.

This analysis sparked a vivid debate between Bayesian and frequentist

statisticians. The well-known Bayesian statistician Tony O’Hagan sent an

email to the newsletter of the International Society for Bayesian Analysis

(ISBA) where the entire statistical analysis was heavily attacked:

We know from a Bayesian perspective that this [frequentist evi-

dence standard, J.S.] only makes sense if (a) the existence of the

Higgs boson [...] has extremely small prior probability and/or

(b) the consequences of erroneously announcing its discovery are

dire in the extreme. Neither seems to be the case [. . . ]. Are

the particle physics community completely wedded to frequen-

tist analysis? If so, has anyone tried to explain what bad science

that is? (O’Hagan 2012)

O’Hagan’s message prompted a vivid exchange in the ISBA forum, with

prominent statisticians and many particle physicists taking part in the dis-

cussion. In the first place, the debate concerned a specific standard of evi-

dence, but since the notion of strong evidence depends on the chosen statis-

tical framework, it quickly developed into a general dispute about the merits

of Bayesian and frequentist statistics. Thus, the discovery of the Higgs par-

ticle exemplifies how the interpretation of a fundamental scientific result

depends on methodological issues about statistical inference. Such cases are

not limited to particle physics: they occur in every branch of science where

statistical methods are used, and include issues as applied as the admission

process for medical drugs.

Statistical methodology is thus a significant topic for philosophy, science

and public policy. In this contribution, we focus on how statistical evidence
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should be interpreted. This is not only the most contested ground between

Bayesians and frequentists, but also utterly relevant for statisticians, exper-

imenters, and scientific policy advisors. The article is structured as follows:

Section 1 summarizes the principles of Bayesian inference. Sections 2 and 3

contrast behavioral and evidential interpretations of frequentist tests. Sec-

tion 4 deals with the notorious p-values. Section 5 discusses confidence

intervals as an alternative to significance tests and p-values whereas 6 deals

with Mayo’s error-statistical approach. Section 7 briefly exposes the optional

stopping problem, and Section 8 concludes with a general discussion.

1 Bayesian Inference

Bayesian reasoners interpret probability as rational degree of belief. That is,

an agent’s system of degrees of belief is represented by a probability function

p(·), and p(H) quantifies his or her degree of belief that hypothesis H is true.

These degrees of belief can be changed in the light of incoming information.

The degree of belief in hypothesis H after learning evidence E is expressed

by the conditional probability of H given E, p(H|E):

Bayesian Conditionalization: The rational degree of belief in a

proposition H after learning E is the conditional probability of H given

E: pnew(H) = p(H|E).1

p(H) and p(H|E) are called the prior probability and posterior

probability of H. They can be related by means of Bayes’ Theorem:

pnew(H) := p(H|E) = p(H)
p(E|H)

p(E)
=

(
1 +

p(¬H)

p(H)
· p(E|¬H)

p(E|H)

)−1

(1)

The terms p(E|H) and p(E|¬H) are called the likelihoods of H and ¬H
on E, that is, the probability of the observed evidence E under a specific

hypothesis, in this case H or ¬H.

The label “Bayesian inference” usually refers to the conjunction of the

following principles:

• The representation of subjective degrees of belief in terms of probabil-

ities.
1See the handbook entry on the subjective interpretation of probability (Zynda 2013)

for a defense of Conditionalization, and for arguments that degrees of belief should satisfy

the probability calculus.

4



• The use of Bayesian Conditionalization for rationally revising one’s

degrees of belief.

• The use of the posterior probability distribution for assessing evidence,

accepting hypotheses and making decisions.

However, not all Bayesians agree with these principles. Carnap’s (1950)

system of logical probability and Jeffreys’ (1939) objective priors violate the

first principle. Conditionalization is rejected by Bayesians who accept the

Principle of Maximum Entropy (Williamson 2010). In this paper, however,

we focus on the standard subjectivist position in Bayesian statistics that is

built on the conjunction of these three principles.2

A consequence of Bayesianism that is of particular importance in statis-

tical inference is the

Likelihood Principle (LP): Consider a statistical model M
with a set of probability measures p(·|θ) parametrized by θ ∈ Θ.

Assume we conduct an experiment E in M. Then, all evidence

about θ generated by E is contained in the likelihood function

p(x|θ), where the observed data x are treated as a constant.

(Birnbaum 1962; Berger and Wolpert 1984).3

To clarify, the likelihood function takes as argument the parameters of

a statistical model, yielding the probability of the actually observed data

under those parameter values. In particular, the LP entails that the prob-

ability of outcomes which have not been observed does not matter for the

statistical interpretation of an experiment.

From the perspective of Bayes’ Theorem, all that is needed to update a

prior to a posterior is the likelihood of H and ¬H given the observed data.

In a statistical inference problem, this corresponds to the probability of the

data x under various values of the unknown parameter θ. Therefore, it is

absolutely logical that a subjective Bayesian endorses the LP.

As Birnbaum (1962) showed in a celebrated paper, the Likelihood Prin-

ciple can be derived from two different and more basic principles: Sufficiency

and Conditionality. We begin with the first one. A statistic (i.e., a function

2See Howson and Urbach (2006) for a philosophical introduction, and Bernardo and

Smith (1994) for a more mathematically oriented treatment.
3We follow the convention of using capital letters for random variables and regular

letters for their realizations.
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of the data X) T (X) is sufficient if the distribution of the data X does not

depend on the unknown parameter θ, conditional on T . In other words,

sufficient statistics are compressions of the data set that do not lose any rel-

evant information about θ. An example is an experiment about the bias of a

coin. Assuming that the tosses are independent and identically distributed,

the overall number of heads and tails is a sufficient statistics for an inference

about the bias of the coin. Thus, we can neglect the precise order in which

the results occurred. Formally, the Sufficiency Principle states that any

two observations x1 and x2 are evidentially equivalent with regard to the

parameter of interest θ as long as T (x1) = T (x2) for a sufficient statistic T .

Therefore, the principle is usually accepted by Bayesians and frequentists

alike.

The Conditionality Principle is more controversial: it states that

evidence gained in a probabilistic mixture of experiments is equal to the

evidence in the actually performed experiment. In other words, if we throw

a die to decide whether experiment E1 is conducted (in case the die comes

up with an odd number) or experiment E2 (even number) and we throw a

six, then the evidence from the overall experiment E = E1 ⊕ E2 is equal to

the evidence from E2. Frequentists usually reject Conditionality since their

measures of evidence take the entire sample space into account.4

According to many, it is the task of science to state the evidence for

hypotheses of interest, instead of reporting degrees of belief in their truth.

To address this challenge, the Bayesian needs a measure of evidence, that

is, a numerical representation of the impact of the data on the hypotheses

of interest. A particular measure is used almost universally: the Bayes

factor, that is, the ratio of prior and posterior odds between hypothesis

H0 : θ ∈ Θ0 and alternative H1 : θ ∈ Θ1 conditional on data x (Kass and

Raftery 1995).

B01(x) :=
p(H0|x)

p(H1|x)
· p(H1)

p(H0)
=

∫
θ∈Θ0

p(x|θ)p(θ)dθ∫
θ∈Θ1

p(x|θ)p(θ)dθ
.5 (2)

Thus, for two composite hypotheses H0 and H1, the Bayes factor can be

written as the ratio of the integrated likelihoods, weighted with the prior

4See Section 7. A thorough discussion of these principles goes beyond the scope of this

article although some issues about Conditionality also return in the section on optional

stopping. Recently, Mayo (2010) has challenged Birnbaum’s proof of the LP from the

Sufficiency and Conditionality principles.
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plausibility of the individual hypotheses.

The Bayes factor is appealing for several reasons. Crucially, one can

derive the posterior probability of a hypothesis H when one knows its prior

p(H) and the Bayes factor of H vs. ¬H. In the case of simple point hypothe-

ses H0 : θ = θ0 vs. H1 : θ = θ1, the Bayes factor reduces to the likelihood

ratio L(x,H0, H1) = p(x|H0)/p(x|H1) which possesses some interesting op-

timality properties as a measure of evidence (Lele 2004).

Some statisticians and methodologists use L(x,H0, H1) as a contrastive

measure of evidence without using the subjective probability interpretation.

The reason is that they have doubts about whether subjective degrees of

belief should be used in quantifying statistical evidence. These likelihood-

ists answer the third grand question—measuring evidence—by means of the

thesis that L, or appropriate amendments thereof, provide the best measure

of evidence (e.g., Royall 1997; Lele 2004). The likelihoodist framework,

sometimes also called “Bayesianism without priors”, has been anticipated

by Hacking (1965) and elaborated by Edwards (1972) and most recently by

the methodologist and biostatistician Richard Royall (1997).

Since likelihoodists and Bayesians agree on a lot of foundational issues—

e.g., both camps accept the LP and raise similar objections against

frequentism—I do not give a separate treatment of this approach. Certainly,

it is conceptually and foundationally appealing, especially because it seems

to do justice to the idea that statistical evidence is objective. However,

likelihood-based inference is hard to implement in practice if the inference

problems involve composite hypotheses and nuisance parameters. In those

cases, computing L(x,H0, H1) seems to require calculation of the marginal

likelihoods, and thus, prior weights over the elements of the hypothesis space:

p(x|H0) =
∫
θ∈Θ0

p(x|θ)p(θ). So the likelihoodist either has to compromise

the objectivity of her approach, effectively becoming a Bayesian, or to take

refuge in other measures of evidence, such as conditional likelihood ratios.

Royall (1997, ch. 7) discusses several ad hoc techniques that take care of im-

portant applications, but the fundamental philosophical problem remains.
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2 Frequentism: Neyman and Pearson’s Behav-

ioral Approach

In the 19th century, probability theory gradually extended its scope from

games of chance to questions of data analysis in science, industry and public

administration. This was perhaps the birth hour of modern statistics. Yet,

statistics was not as strongly linked to inductive inference as it is today. For

instance, an eminent statistician and biologist like Francis Galton conceived

of statistics as a descriptive tool for meaningfully compressing data, and

summarizing general trends (cf. Aldrich 2013). Moreover, in those days

the nomothetic ideal—to strive for certainty, for invariable, deterministic

laws—had a great impact on scientific practice. Probability was used to

quantify the lack of precision in measurement and conclusions, but not as a

meaningful part of scientific theorizing (see the contributions in Krüger et

al. 1987).

This attitude changed at the beginning of the 20th century with the

groundbreaking discoveries of statisticians such as Karl Pearson and William

Gosset (“Student”). Pearson discovered the χ2-test (1900) for testing the

goodness of fit between a hypothesized distribution and the observed data,

Gosset discovered the t-test (1908) for making inferences about the mean of

a Normally distributed population. These techniques, which are still widely

used today, were invented in response to applied research questions and

mark the transition from descriptive to inferential statistics. Statistics

became a discipline concerned with making inferences about a parameter of

interest, predictions and decisions, rather than just summarizing data.

Given the aforementioned nomothetic, objectivist ideals, many scien-

tists had issues with the Bayesian approach to probabilistic inference. After

all, subjective degrees of belief are hard to measure, and apparently lack

the impartiality and objectivity of scientific findings. The great statistician

Ronald A. Fisher (1935, 6–7) even spoke of “mere psychological tendencies,

theorems respecting which are useless for scientific purposes”. Fisher clar-

ified that he did not believe Bayesian reasoning to be logically invalid, but

that there is rarely any reliable information on which a non-arbitrary prior

probability distribution could be based.

The need to develop a coherent non-Bayesian theory of probabilistic

inference was therefore badly felt. One famous answer was given by the
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British statisticians Jerzy Neyman and Egon Pearson who connected sta-

tistical analysis to rational decision-making. In their groundbreaking 1933

paper, they developed a genuinely frequentist theory of hypothesis testing:

statistical tests should be constructed as to minimize the relative frequency

of wrong decisions in a hypothetical series of repetitions of the test. In

particular, Neyman and Pearson linked the interpretation of statistical ex-

periments tightly to their design.

An example may illustrate their approach. Suppose that we must decide

whether a medical drug is going to make it to the next phase in a cum-

bersome and expensive drug admission process. Of course, we would not

like to admit a drug that is no better than existing treatments in terms of

efficacy, side effects, costs, and so on. On the other hand, we do not want

to erroneously eliminate a superior drug from the admission process. These

are the two possible kinds of errors, commonly called type I and type II

error.

For making a sound decision, Neyman and Pearson suggest the following

route: first, the scientist chooses a default or null hypothesis H0 for which

a type I error rate is fixed. In medicine, the null usually states that the

new treatment brings no improvement over the old one. After all, admitting

an inefficient or even harmful drug is worse than foregoing a more effective

treatment—at least from a regulatory point of view. By contrast, the al-

ternative H1 states that the drug is a genuine improvement. While a type

I error corresponds to erroneous rejection of the null hypothesis, a type II

error stands for erroneous acceptance of the null.

Conventionally, acceptable type I error rates are set at a level of 5%,

1% or 0.1%, although Neyman and Pearson insist that these levels have no

special meaning, and that striking the balance between type I and type II

error rates is a highly context-sensitive endeavor. In good frequentist spirit,

Neyman and Pearson devise a decision procedure such that (i) in not more

than 5%/1%/0.1% of all cases where the null hypothesis is true, it will be

rejected; (ii) the power of the test—its ability to discern the alternative

when it is true—is maximal for the chosen level of the test. In other words,

given a fixed type I error rate (e.g., 1%), we design the test such that the

type II error rate is minimized. Then, we are rational in following the test

procedure because of its favorable long-run properties:

[...] we shall reject H when it is true not more, say, than once in
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a hundred times, and in addition we may have evidence that we

shall reject H sufficiently often when it is false. (Neyman and

Pearson 1967, 142)

But how do we find the optimal test? For the case of two point hypothe-

ses (θ = θ0 vs. θ = θ1) being tested against each other, Neyman and Pearson

have proved an elegant result:

Fundamental Lemma of Neyman and Pearson (1933):

When testing two point hypotheses against each other, the most

powerful test at any level α is the likelihood ratio test. This is a

test T for which there is a C(α) ∈ R such that for data x:

T (x) =

accept H0 if L = p(x|θ=θ0)
p(x|θ=θ1) ≥ C(α)

reject H0 if L = p(x|θ=θ0)
p(x|θ=θ1) < C(α)

(3)

Hence, the uniformly most optimal test in Neyman and Pearson’s sense

depends on the weight of evidence as measured by the likelihood ratio L.

If L strongly favors H1 over H0, we will reject the null, otherwise we will

accept it. This result is at the bottom of a powerful mathematical theory of

hypothesis testing and has greatly influenced statistical practice. However,

Neyman and Pearson’s approach has been attacked from a methodological

point of view: according to Fisher, such tests are clever decision tools, but

miss the point of scientific research questions. The next section explains this

criticism.

3 Frequentism: Significance Tests and Fisher’s

Disjunction

The second grand tradition in frequentist statistics emerged with Ronald

A. Fisher, eminent geneticist and statistician, who violently opposed Ney-

man and Pearson’s behavioral, decision-theoretic approach. In determining

an acceptable type I error rate, Neyman and Pearson implicitly determine

the severity of an error, thereby imposing a decision-theoretic utility struc-

ture on the experiment in question. Fisher argued, however, that

in the field of pure research no assessment of the cost of wrong

conclusions [...] can conceivably be more than a pretence, and in
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any case such an assessment would be inadmissible and irrelevant

in judging the state of the scientific evidence. (Fisher 1935, 25–

26)

Two arguments are implied here. First, we cannot quantify the utility that

correctly accepting or rejecting a hypothesis will eventually have for the

advancement of science. The far-reaching consequences of such a decision

lie beyond our horizon. Second, statistical hypothesis tests should state the

evidence for or against the tested hypothesis: a scientist is interested in

whether she has reason to believe that a hypothesis is true or false. Her

judgment should not be obscured by the practical consequences of working

with this rather than that hypothesis. Therefore, Neyman-Pearson tests

may be helpful in industrial quality control and other applied contexts, but

not in finding out the truth about a scientific hypothesis.6

For Fisher (1956) himself, the purpose of statistical analysis consisted

in assessing the relation of a (null) hypothesis to a body of observed data.

That hypothesis usually stands for there being no effect of interest, no causal

relationship between two variables, etc. In other words, the null denotes the

absence of a phenomenon to be demonstrated. Then, the null is tested

for being compatible with the data—notably, without considering explicit

alternatives. This is called a significance test. Thus, Fisher’s approach

is essentially asymmetric: while a “rejection” strongly discredits the null

hypothesis, an “acceptance” just means that the facts have failed to disprove

the null. By contrast, Neyman-Pearson tests with sufficiently high power

are essentially symmetric in the interpretation of the outcome.

The basic rationale of significance testing, called “Fisher’s Disjunction”

by Hacking (1965), is as follows: a very unlikely result undermines the

(objective) tenability of the null hypothesis.

“either an exceptionally rare chance has occurred, or the theory

[=the null hypothesis] is not true.” (Fisher 1956, 39)

The occurrence of such an exceptionally rare chance has both epistemological

and practical consequences: first, the null hypothesis is rendered “objectively

6The classification of Neyman-Pearson tests as purely behavioral is not without con-

tention. Following the representation theorems in Savage (1962), one might link Neyman-

Pearson tests to a general theory of belief attitudes and rational decision-making. Romeijn

(2010, Section 9) also investigates an embedding of Neyman-Pearson tests into Bayesian

statistics.
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incredible” (Spielman 1974, 214), second, the null should be treated as if it

were false. Naturally, this judgment is not written in stone, but may be

overturned by future evidence. Below, there is a graphical representation of

Fisher’s main idea.

p(Data|Null Hypothesis) is low.

Data is observed.

Null Hypothesis is discredited.

Notably, Fisher’s ideas are close to Popper’s falsificationism, albeit with

more inductivist inclinations. They both agree the only purpose of an exper-

iment is to “give the facts a chance of disproving the null hypothesis” (Fisher

1925, 16). They also agree that failure to reject a hypothesis does not con-

clude positive evidence for the tested (null) hypothesis. But unlike Popper

(1934/59), Fisher aims at experimental and statistical demonstrations of a

phenomenon.

The above scheme of inference (cf. also Gillies 1971) has been criticized

frequently. Hacking (1965, 81–82) has pointed out that the explication of

the term “exceptionally rare chance” inevitably leads into trouble. A prima

facie reading of Fisher’s above quote seems to suggest that the chance of

the observed event must be exceptionally low compared to other events that

could have been observed. But in that case, some statistical hypotheses

could never be tested. For instance, a uniform distribution over a finite

set of events assigns equal likelihood to all observations, so there is no ex-

ceptionally rare chance. How should we test—and possibly reject—such a

hypothesis?

To expand on this point, imagine that we are now testing the hypoth-

esis that a particular coin is fair. Compare now two series of indepen-

dent and identically distributed tosses: ‘HTTHTTTHHH’ and ‘HHHHHH-

HHHH’. The probability of both events under the null is the same, namely

(1/2)10 = 1/1024. Still, the second series, but not the first, seems to strongly

speak against the null. Why is this the case? Implicitly, we have specified

the way in which the data are exceptional : namely, we are interested in the

propensity θ of the coin to come up tails. Since T , the number of tails, is

a sufficient statistic with respect to θ, we can restrict our attention to the

value of T . Then, {T = 0} is indeed a much less likely event than {T = 5}
(cf. Royall 1997, ch. 3).
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It seems that we cannot apply significance tests without an implicit spec-

ification of alternative hypotheses; here: that the coin is biased toward tails.

Spielman (1974) further presses this point in an extended logical analysis

of significance testing: inferring from an unlikely result to the presence of

a significant effect presupposes that the observed result is much more likely

under an implicitly conceived alternative than under the null. Otherwise we

would have no reason to appraise that effect. Indeed, modern frequentist

approaches, such as Mayo’s (1996) error-statistical account, take this into

account by explicitly setting up statistical inference in a contrastive way.

That is, testing always occurs with respect to a direction of departure from

the tested hypothesis.

However, does this modification suffice to save the logic of significance

testing? Consider a blood donor who is routinely tested for an HIV infection.

Let the null hypothesis state that the donor has not contracted HIV. The test

returns the correct result in 99% of all cases, regardless of whether an HIV

infection is present or not. Now, the test returns a positive result. Under the

null, this certainly constitutes an exceptionally rare chance whereas under

the alternative, it is very likely. Should the donor now be convinced that

he has contracted HIV, given a general HIV prevalence of 0.01% in the

population?

A Bayesian calculation yields, perhaps surprisingly, that he should still

be quite certain of not having contracted HIV:

p(HIV contraction|positive test)

=

(
1 +

p(positive test|no contraction)

p(positive test|HIV contraction)

p(no contraction)

p(HIV contraction)

)−1

=

(
1 +

0.01

0.99

0.9999

0.0001

)−1

≈ 0.01

In other words, the evidence for a contraction is more than cancelled by the

very low base rate of HIV infections in the relevant population. Therefore,

straightfowardly rejecting the null hypothesis on the basis of a “significant”

finding is no valid inference, even if the findings are likely under the al-

ternative. Since the fallacy is caused by neglecting the base rates in the

populations, it is called the Base Rate Fallacy (cf. Goodman 1999).

Thus, if a significance test is supposed to deliver a valid result, the null

must not be too credible beforehand (cf. Spielman 1974, 225). But if we

make all these restrictions to Fisher’s proposal, it is questionable why we

13



should not switch to a straight Bayesian approach. After all, both ap-

proaches involve judgments of prior credibility, and the Bayesian framework

is much more systematic and explicit in making and revising such judgments,

and in integrating various sources of information.7

The above criticisms show that significance testing is logically invalid.

To rescue it, we have to make additional premises, some of which adopt a

Bayesian viewpoint. But if all this is right, why is significance testing such

a widespread tool in scientific research? This question will be addressed in

the next section.

4 Frequentism: p-values

Significance testing in the Fisherian tradition is arguably the most popular

methodology in statistical practice. But there are important distinctions

between Fisher’s original view, discussed above, and the practice of signifi-

cance testing in the sciences, which is a hybrid between the Fisher and the

Neyman-Pearson school of hypothesis testing, and where the concept of the

p-value plays a central role.

To explain these differences, we distinguish between a one-sided and a

two-sided testing problem. The one-sided problem concerns the question

of whether an unknown parameter is greater or smaller than a particular

value (θ ≤ θ0 vs. θ > θ0), whereas the two-sided testing problem (or point

null hypothesis test) concerns the question of whether or not parameter θ is

exactly equal to θ0: H0 : θ = θ0. vs. H1 : θ 6= θ0. The two-sided test can be

used for asking different questions: first, whether there is “some effect” in

the data (if the null denotes the absence of a causal relationship), second,

whether H0 is a suitable proxy for H0 ∨ H1, that is, whether the null is a

predictively accurate idealization of a more general statistical model.

This use of hypothesis tests differs from Fisher’s since he considered in-

ferences within a parametric model primarily as a problem of parameter

estimation, not of hypothesis testing (cf. Spielman 1978, 122). His method

of significance testing was devised for testing hypotheses without considering

7Spanos (2010, 576–580) objects that properly conceptualized frequentist tests do not

fall prey to the Base Rate Fallacy: frequentist hypotheses describe an unknown data-

generating mechanism. Whereas the hypothesis of interest in the above example (whether

the donor has contracted HIV) is just an event in a more general statistical model that

describes contraction status and test results of the entire population.
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alternative hypotheses. But due to the problems mentioned in the previous

section and the influence of Neyman and Pearson, modern significance tests

require the specification of an alternative hypothesis. However, their in-

terpretation is not behavioral, as Neyman and Pearson would require, but

evidential, as Fisher would have requested.

The central concept of modern significance tests—the p-value—is now

illustrated in a two-sided testing problem. Again, we want to infer the

presence of a significant effect in the parameter θ if the discrepancy between

data x := (x1, . . . , xN ), corresponding to N realizations of an experiment,

and null hypothesis H0 : θ = θ0 is large enough. Assume now that the

variance σ2 of the population is known. Then, one measures the discrepancy

in the data x with respect to the postulated mean value θ0 by means the

standardized statistic

z(x) :=
1
N

∑N
i=1 xi − θ0√
N · σ2

(4)

We may re-interpret equation (4) as

z =
observed effect− hypothesized effect

standard error
(5)

Determining whether a result is significant or not depends on the p-value or

observed significance level, that is, the “tail area” of the null under the

observed data. This value depends on z and can be computed as

p := p(|z(X)| ≥ |z(x)|), (6)

that is, as the probability of observing a more extreme discrepancy under the

null than the one which is actually observed. Figure 1 displays an observed

significance level p = 0.072 as the integral under the probability distribution

function. For the frequentist practitioner, p-values are practical, replicable

and objective measures of evidence against the null: they can be computed

automatically once the statistical model is specified, and only depend on the

sampling distribution of the data under H0. Fisher interpreted them as “a

measure of the rational grounds for the disbelief [in the null hypothesis] it

augments” (Fisher 1956, 43).8

The virtues and vices of significance testing and p-values have been dis-

cussed at length in the literature, and it would go beyond the scope of this

8See Romeijn (2010) for further exposition of an epistemic reading of frequentist statis-

tics, including Fisher’s fiducial argument.
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Figure 1: The probability density function of the null H0 : X ∼ N(0, 1),

which is tested against the alternative H1 : X ∼ N(θ, 1), θ 6= 0. The shaded

area illustrates the calculation of the p-value for observed data x = 1.8

(p = 0.072).
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article to deliver a comprehensive discussion (see e.g., Cohen 1994; Harlow

et al. 1997). The most important criticisms are discussed below and in Sec-

tion 7 where the sample space dependence of frequentist inference will

be thematized (cf. Hartmann and Sprenger 2011).

4.1 p-values and posterior probabilities

The arguably biggest problem with p-values is practical: many researchers

are unable to interpret them correctly. Quite often, a low p-value (e.g.,

p < 0.001) is taken as the statement that the null hypothesis has a posterior

probability smaller than that number (e.g., Oakes 1986; Fidler 2005). Of

course, this is just an instance of the Base Rate Fallacy: subjects conflate the

conditional probability of the evidence given the hypothesis, p(E|H), with

the conditional probability of the hypothesis given the evidence, p(H|E). In

other words, they conflate statistical evidence with rational degree of belief.

Despite persistent efforts to erase the Base Rate Fallacy, it continues to

haunt statistical practitioners. Some have argued that this is an effect of

the unintuitive features of the entire frequentist framework. For example,

the German psychologist Gerd Gigerenzer (1993) argues that scientists are

primarily interested in the tenability or credibility of a hypothesis, not in

the probability of the data under the null. The question is then: how should

we relate p-values to posterior probabilities? After all, a Bayesian and a

frequentist analysis should agree when prior probability distributions can

be objectively grounded.

It turns out that in the one-sided testing problem, p-values can often

be related to posterior probability (Casella and Berger 1987, more on this

in Section 6) whereas in the two-sided or point null testing problem, the

two measures of evidence diverge. When the prior is uninformative, a low

p-value may still entail a high posterior probability of the null. More pre-

cisely, Berger and Sellke (1987) show that the p-value is often proportional

to a lower bound on the posterior probability of the null, thus systemat-

ically overstating the evidence against the null. This suggests a principal

incompatibility between frequentist and Bayesian reasoning in the two-sided

testing problem. We expand on this point in a later subsection when dis-

cussing Lindley’s paradox.
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4.2 p-values vs. effect size

Another forceful criticism of p-values and significance tests concerns their

relation to effect size. The economists Deirdre McCloskey and Stephen Ziliak

have launched strong attacks against significance tests in a series of papers

and books (McCloskey and Ziliak 1996; Ziliak and McCloskey 2008). Let

us give their favorite example. Assume that we have to choose between two

diet cures, based on pill A and pill B. Pill A makes us lose 10 pounds on

average, with an average variation of 5 pounds.9 Pill B makes us lose 3

pounds on average, with an average variation of 1 pound. Which one leads

to more significant loss? Naturally, we opt for pill A because the effect of

the cure is so much larger.

However, if we translate the example back into significance testing, the

order is reversed. Assume the standard deviations are known for either pill.

Compared to the null hypothesis of no effect at all, observing a three pounds

weight loss after taking pill B is a more significant result evidence for the

efficacy of that cure than observing a ten pounds weight loss after taking

pill A:

zA(10) =
10− 0

5
= 2 zB(3) =

3− 0

1
= 3

Thus, there is a notable discrepancy between our intuitive judgment and

the one given by the p-values. This occurs because statistical significance

is supposed to be “a measure of the strength of the signal relative to back-

ground noise” (Hoover and Siegler 2008, 58). On this score, pill B indeed

performs better than pill A, because of the favorable signal/noise ratio. But

pace Ziliak and McCloskey, economists, businesspersons and policy-makers

are interested in the effect size, not the signal/noise ratio: they do not want

to ascertain the presence of some effect, but to demonstrate a substantial

effect, as measured by effect size.

This fundamental difference is, however, frequently neglected. By scruti-

nizing the statistical practice in the top journal American Economic Review,

as well as by surveying the opinion of economists on the meaning of statis-

tical significance, McCloskey and Ziliak derive the conclusion that most

economists are unaware of the proper meaning of statistical concepts. In

9The concept of “average variation” is intuitively explicated as the statistical concept

of standard deviation, which is, for a random variable X, defined as
√
E[(X − E(X))2].
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practice, “asterisking” prevails: e.g., in correlation tables, the most signifi-

cant results are marked with an asterisk, and these results are the ones that

are supposed to be real, big, and of practical importance. But an effect need

not be statistically significant to be big and remarkable (like pill A), and a

statistically significant effect can be quite small and uninteresting (like pill

B).

4.3 p-values and Lindley’s Paradox

The tension between effect size and statistical significance is also manifest in

one of the most famous paradoxes of statistical inference, Lindley’s Paradox.

Classically, it is stated as follows:

Lindley’s Paradox: Take a Normal modelN(θ, σ2) with known

variance σ2 and a two-sided testing problem H0 : θ = θ0 vs.

H1 : θ 6= θ0. Assume p(H0) > 0, and any regular proper prior

distribution on {θ 6= θ0}. Then, for any testing level α ∈ [0, 1],

we can find a sample size N(α) and independent, identically

distributed data x = (x1, . . . , xN ) such that

1. The sample mean x̄ is significantly different from θ0 at level

α;

2. p(H0|x), that is, the posterior probability that θ = θ0, is at

least as big as 1− α. (cf. Lindley 1957, 187)

In other words, a Bayesian and a frequentist analysis of a two-sided test

may reach completely opposite conclusions. The reason is that the com-

bination of statistical significance and large sample size (=high power) is

highly misleading. In fact, as sample size increases, an ever smaller discrep-

ancy from the null suffices to achieve a statistically significant result against

the point null. The reader will thus be lured into believing that a “signif-

icant” result has substantial scientific implications although the effect size

is very small. The high power of a significance test with many observations

provides no protection against inferring to insignificant effects, quite to the

contrary. Therefore, Lindley’s Paradox lends forceful support to Ziliak and

McCloskey’s claim that statistical significance is a particularly unreliable

guide to scientific inference.

This is not to say that all is well for the Bayesian: Assigning a strictly

positive degree of belief p(H0) > 0 to the point null hypothesis θ = θ0 is
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a misleading and inaccurate representation of our subjective uncertainty.

After all, θ = θ0 is not much more credible than any value θ0 ± ε in its

neighborhood. Therefore, assigning a strictly positive prior to H0, instead

of a continuous prior, seems unmotivated (cf. Bernardo 2012).

But if we set p(H0) = 0, then for most priors (e.g., an improper uniform

prior) the posterior probability distribution will not peak at the null value,

but somewhere else. Thus, the apparently innocuous assumption p(H0) > 0

has a marked impact on the result of the Bayesian analysis. Attempts

to consider it as a mathematical approximation of testing the hypothesis

H0 : |θ − θ0| < ε break down as sample size increases (cf. Berger and

Delampady 1987).

The choice of prior probabilities, for H0 as well as over the elements of

H1, is therefore a very sensitive issue in Lindley’s paradox. Quite recently,

the Spanish statistician José M. Bernardo (1999, 2012) has suggested to

replace the classical Bayesian focus on posterior probability as a decision

criterion by the Bayesian Reference Criterion (BRC), which focuses on the

predictive value of the null in future experiments. This move avoids assign-

ing strictly positive mass to a set of measure zero {θ = θ0} and reconciles

Bayesian and frequentist intuitions to some extent. Sprenger (2013a) pro-

vides a more detailed discussion of this approach.

4.4 p-values and the assessment of research findings

A methodological problem with p-values, stemming from their roots in Fish-

erian significance testing, is that insignificant results (=p-values greater than

.05) have barely a chance of getting published. This is worrisome for at least

two reasons: first, even a statistically insignificant result may conceal a big

and scientifically relevant effect, as indicated by Ziliak and McCloskey; sec-

ond, it prevents an appraisal of the evidence in favor of the null hypothesis.

As a consequence, valuable resources are wasted because different research

teams replicate insignificant results over and over again, not knowing of the

efforts of the other teams. In addition, the frequentist provides no logic of

inference for when an insignificant result supports the null, rather than just

failing to reject it.

This asymmetry in frequentist inference is at the bottom of Ioannides’

(2005) famous thesis that “most published research findings are false”. Ioan-

nides reasons that there are many false hypotheses that may be erroneously
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supported and yield a publishable research finding. If we test for significant

causal relationships in a large set of variables, then the probability of a false

positive report is, for type I and type II error rates α and β, normally larger

than the probability that a true hypothesis is found. In particular, if R

denotes the ratio of true to false relationships that are tested in a field of

scientific inquiry and a “significant” causal relationship is found, then

p(the supposed causal relationship is true) =
(1− β) ·R

(1− β) ·R+ α
(7)

This quantity is smaller than 1/2 if and only if R < α/(1 − β) which will

typically be satisfied, given that α = .05 is the standard threshold for pub-

lishable findings, and that most causal relationships that scientists investi-

gate are not substantial. Thus, most published research findings are indeed

artifacts of the data and plainly false—an effect that is augmented by the

experimenter’s bias in selecting and processing his or her data set.

This finding is not only a feature of scientific inquiry in general, but

specifically due to the frequentist logic of inference: the one-time achieve-

ment of a significant result is just not a very good indicator for the objective

credibility of a hypothesis. Indeed, researchers often fail to replicate find-

ings by another scientific team, and periods of excitement and subsequent

disappointment are not uncommon in frontier science. Th e problems with

frequentist inference affect the success of entire research programs.

5 Confidence Intervals as a Solution?

The above criticisms dealt severe blows to classical significance tests and

the use of p-values. In the last decades, frequentists have therefore adapted

their tools. Nowadays, they often replace significance tests by confidence

intervals, allegedly a more reliable method of inference (e.g., Cumming and

Finch 2005; Fidler 2005). Confidence intervals are interval estimators that

work as follows: Let C(·, ·) be a subset of Θ × X for parameter space Θ

and sample space X . Then consider the set C(θ0, ·) that comprises those

(hypothetical) data points for which the hypothesis θ = θ0 would not be

rejected at the level α. In other words, C(θ0, ·) contains the data points

that are consistent with θ0.

If we construct these sets for all possible values of θ, then we obtain

a two-dimensional set C with (θ, x) ∈ Θ × X . Assume further that we
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observe data x0. Now define the projection of C on the data x0 by means

of Cx0 := {θ|x0 ∈ C(θ, x0)}. This set Cx0 ⊂ Θ is called the confidence

interval for parameter θ at level α, on the basis of data x0.

Confidence intervals should not be understood in the literal sense that

upon observing x0, parameter θ lies in the interval Cx0 with probability

1 − α. After all, the frequentist does not assign any posterior probability

to the parameters of interest. Rather, the level of the confidence interval

says something about the procedure used to construct it: in the long run,

the observed data x will be consistent with the constructed intervals for θ

in 100 · (1− α)% of all cases, independent of the actual value of θ.

The advantage of confidence intervals over significance tests can be il-

lustrated easily in the case of Lindley’s Paradox. If we constructed a 95%

confidence interval for θ, it would be a very narrow interval in the neigh-

borhood of θ0. Under the conditions of large sample size with low effect

size, a confidence interval would avoid the false impression that the null was

substantially mistaken.

However, confidence intervals do not involve a decision-theoretic compo-

nent; they are interval estimators. If we take seriously that scientists want

to conduct real tests, instead of estimating parameters, then confidence in-

tervals cannot alleviate the worries with frequentist inference. Rather than

solving the problem, they shift it, although they are certainly an improve-

ment over näıve significance testing.

That said, confidence intervals rather fulfill the function of a consistency

check than of inspiring trust in a specific estimate. They list the set of

parameter values for which the data fall into the acceptance region at a

certain level. This is in essence a pre-experimental perspective. But this do

not warrant, post-experimentally, that the parameter of interest is “proba-

bly” in the confidence interval. Therefore, some frequentists are not happy

with confidence intervals either. In recent years, the philosopher of statistics

Deborah Mayo (1996) has tried to establish degrees of severity as superior

frequentist measures of evidence. The next section is devoted to discussing

her approach.
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6 Mayo’s Error-Statistical Account

In her 1996 book “Error and the Growth of Experimental Knowledge”, Deb-

orah Mayo works out a novel account of frequentist inference. Mayo’s key

concept, degrees of severity, combines Neyman and Pearson’s innovation

regarding the use of definite alternatives and the concept of power with

Fisher’s emphasis on post-experimental appraisals of statistical evidence.

Mayo’s model of inference stands in a broadly Popperian tradition: for

her, it is essential to scientific method that a hypothesis that we appraise

has been well probed (=severely tested). Why should passing a test count

in favor of a hypothesis? When are we justified to rely on such a hypothesis?

Popper (1934/59, 282) gave a skeptical reply to this challenge: he claimed

that corroboration—the survival of past tests—is just a report of past per-

formance and does not warrant any inference to future expectations. Mayo

wants to be more constructive and to entitle an inference to a hypothesis:

evidence E should be taken as good grounds for H to the extent

that H has passed a severe test with E (Mayo 1996, 177)

Regarding the notion of what it means (for a statistical hypothesis) to pass

a severe test, she adds:

a passing result is a severe test of hypothesis H just to the extent

that it is very improbable for such a result to occur, were H false

(loc. cit., 178)

Notably, a null hypothesis which passes a significance test would, on Mayo’s

account, not necessarily count as being severely tested. For example, in tests

with low sample size, the power of the test would typically be small, and

even a false null hypothesis would probably pass the test. This is one of the

reasons why she insists that hypotheses are always tested against definite

alternatives. By means of quantifying how well a statistical hypothesis has

been probed, we are entitled to inferences about the data-generating process.

This exemplifies the basic frequentist idea that statistical inferences are valid

if they are generated by reliable procedures.

For Mayo, a hypothesis H is severely tested with data x if (S-1) the data

agree with the hypothesis, and (S-2) with very high probability, the data

would have agreed less well with H if H were false (Mayo and Spanos 2006,
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329).10

We illustrate her approach with an example of a Normally distributed

population N(θ, σ2) with known variance σ2. Assume that we want to quan-

tify the severity with which the hypothesis H0 : θ ≤ θ0 passes a test T with

observed data x (against the alternative H1 : θ > θ0). First, we measure the

discrepancy of the data from the hypotheses by means of the well-known

statistics

zθ0(X) =
√
N(X̄ − θ0)/σ

z measures the distance of the data from H0 in the direction of H1 (cf. Mayo

and Spanos 2006, 331): a large value of X̄ − θ0 yields large values of z and

thus, evidence against the null. Then, the severity with which H0 passes a

test with data x is defined as the probability that zθ0(X) would have taken a

higher value if the alternative H1 : θ > θ0 had been true. Mathematically:11

SEV(θ ≤ θ0)(x,H1) = p(zθ0(X) > zθ0(x); θ > θ0). (8)

As the alternative H1 : θ > θ0 comprises a large set of hypotheses that im-

pose different sampling distributions on the z-statistic, there is an ambiguity

in (8). Which element of H1 should be used for calculating the probability

of the right hand side? To resolve this problem, Mayo observes that a lower

bound on the test’s severity is provided by calculating severity with respect

to the hypothesis θ = θ0. Thus, equation (8) becomes

SEV(θ ≤ θ0)(x,H1) = p(zθ0(X) > zθ0(x); θ = θ0). (9)

This is, however, only half of the story. Mayo would also like to calculate

at which severity the claim θ ≤ θ0 passes a test as a function of θ0 when

x is kept constant. Therefore, she calculates the severity function for θ0

indicating which discrepancies from the null are warranted by the actual

data, and which are not. Figure 2 gives an illustration.

10The precise meaning of (S-1) remains a bit unclear; Mayo and Spanos (2006, 336) say

in passing that statistically insignificant results “agree” with the null. This definition may

be contested, however: depending on the choice of the alternative, insignificant results

may strongly discredit the null.
11I modify the notation in Mayo and Spanos (2006) to some extent. However, I follow

them in using the semicolon for separating event and hypothesis in the calculation of the

degree of severity because for them, the difference to the vertical dash (and to conditional

probability) carries philosophical weight.
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Figure 2: Inference about the mean θ of a normal population with variance

σ2 = 1. The three curves show the degrees of severity at which the hypoth-

esis θ ≤ θ0 is accepted for three different data points. Dotted line: severity

function for data x = −1, full line: x = 0, dashed line: x = 1.5.
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The main merit of Mayo’s approach consists in systematizing the various

intuitions, heuristics and rationales in frequentist statistics. Practice is often

a hodgepodge of methods, inspired by ideas from both the Neyman-Pearson

and the Fisherian school. In particular, practitioners often combine deci-

sion procedures—calculating the power of a test, accepting/rejecting a null,

etc.—with post-data evidential assessments, such as “hypothesis H0 was re-

jected in the experiment (p=.026, power=.87)”. Strictly speaking, this mix

of Fisherian and Neyman-Pearson terminology is incoherent. With the error-

statistical philosophy of inference and the concept of degree of severity, there

is now a philosophical rationale underlying this practice: Mayo supplements

Neyman and Pearson’s pre-experimental methodology for designing power-

ful tests with a post-experimental measure of evidence. Therefore Mayo’s

approach is reasonably close to a lot of scientific practice carried out in the

framework of frequentist statistics.

That said, there are also a number of problems for Mayo’s approach,

mainly due to foundational problems that are deeply entrenched in the entire

frequentist framework.

First, error statistics reduces the testing of composite hypotheses against

each other (e.g., θ ≤ θ0 vs. θ > θ0) to testing a hypothesis against that

particular hypothesis which provides the most severe test (in this case, θ =

θ0). Thus, it may be asked whether degrees of severity really improve on a

traditional frequentist or a likelihoodist analysis.

Second, there is a close mathematical relationship between degrees of

severity and (one-sided) p-values. Both are derived from the cumulative

distribution function of the z-statistic, as equation (9) indicates. Therefore,

degrees of severity share the problems of p-values and are poor indicators of

rational credibility, at least from a Bayesian point of view.

Mayo might counter that a result by Casella and Berger (1987) shows

the convergence of Bayesian and frequentist measures of evidence in the one-

sided testing problem, effectively alleviating the Bayesian’s worries. But

I am skeptical that this response works. The reconciliationist results by

Casella and Berger make substantial demands on the statistical model, e.g.,

probability density functions must be symmetric with monotone likelihood

ratios (e.g., Theorem 3.1). Even then, the p-value can still substantially

deviate from the posterior probability. Only for very large datasets, we will

finally have agreement between Bayesian and frequentist measures.

26



Third, Mayo only provides an evidential interpretation of directional

tests, not a rebuttal of the objections raised against two-sided frequentist

tests (e.g., in Lindley’s paradox). In particular, the question of whether

a specific model can be treated as a proxy for a more general model is

not addressed in the error-statistical framework: it only specifies warranted

differences from a point hypothesis in a particular direction. However, a

statistical framework that aims at resolving the conceptual problems in fre-

quentist inference should address these concerns, too.

Fourth, as I will argue in the following section, the error-statistical theory

fails, like any frequentist approach, to give a satisfactory treatment of the

optional stopping problem.

7 Sequential Analysis and Optional Stopping

Sequential analysis is a form of experimental design where the sample

size is not fixed in advance. This is of great importance in clinical trials, e.g.

when we test the efficacy of a medical drug and compare it to the results in

a control group. In those trials, continuation of the trial (and possibly the

decision to allocate a patient to either group) depends on the data collected

so far. For instance, data monitoring committees will decide to stop the

trial as soon as there are substantial signs that the tested drug has harmful

side effects.

A stopping rule describes under which conditions a sequential trial is

terminated, as a function of the observed results. For example, we may

terminate a trial when a certain sample size is reached, or whenever the

results clearly favor one of the two tested hypotheses.12 The dissent between

Bayesians and frequentists concerns the question of whether our inference

about the efficacy of the drug should be sensitive to the specific stopping

rule used.

From a frequentist point of view, the significance of a result may depend

on whether or not it has been generated by a fixed sample-size experiment.

Therefore, regulatory bodies such as the Food and Drug Administration

(FDA) require experimenters to publish all trial properties in advance, in-

cluding the stopping rule they are going to use.

12Formally, stopping rules are functions τ : (X∞,A∞)→ N from the measurable space

(X∞,A∞) (=the infinite product of the sample space) to the natural numbers such that

for each n ∈ N, the set {x ∈ X∞|τ(x) = n} is measurable.
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For a Bayesian, the LP implies that only information contained in the

likelihood function affects a post-experimental inference. Since the likeli-

hood functions of the parameter values under different stopping rules are

proportional to each other (proof omitted), stopping rules can have no ev-

idential role. Berger and Berry (1988, 34) call this the Stopping Rule

Principle. To motivate this principle, Bayesians argue that

The design of a sequential experiment is [..] what the experi-

menter actually intended to do. (Savage 1962, 76. Cf. Edwards,

Lindman and Savage (1963, 239).)

In other words, since such intentions are “locked up in [the experimenter’s]

head” (ibid.), not verifiable for others, and apparently not causally linked

to the data-generating process, they should not matter for sound statistical

inference. This is the sample space dependence of frequentist inference

mentioned in Section 4.

This position has substantial practical advantages: if trials are termi-

nated for unforeseen reasons, e.g. because funds are exhausted or because

unexpected side effects occur, the observed data can be interpreted properly

in a Bayesian framework, but not in a frequentist framework. As externally

forced discontinuations of sequential trials frequently happen in practice,

claims to the evidential relevance of stopping rules would severely compro-

mise the proper interpretation of sequential trials.

However, from a frequentist point of view, certain stopping rules, such as

sampling on until the result favors a particular hypothesis, lead us to biased

conclusions (cf. Mayo 1996, 343–345). In other words, neglect of stopping

rules in the evaluation of an experiment makes us reason to a foregone con-

clusion. Consider a stopping rule that rejects a point null H0 : θ = θ0 in

favor of H0 : θ 6= θ0 whenever the data are significant at the 5% level. With

probability one, this event will happen at some point, independent of the

true value of θ (Savage 1962; Mayo and Kruse 2001).13 In this case, the type

I error is apparently 0.05 while it actually approaches unity since rejection of

the null is bound to happen at some point. Not only this: a malicious scien-

tist who wants to publish a result where a certain null hypothesis is rejected,

can design an experiment where this will almost certainly happen, with an

arbitrarily high level of statistical significance (provided she does not run out

13As we saw in the case of Lindley’s Paradox, an ever smaller divergence from the null

is sufficient to trigger statistical significance as sample size increases.
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of money before). Should we trust the scientist’s conclusion? Apparently

no, but the Bayesian cannot tell why. Frequentists such as Mayo read this

as the fatal blow for positions that deny the post-experimental relevance of

stopping rules.

The Bayesian response is threefold. First, the posterior probability of

a hypothesis cannot be arbitrarily manipulated (Kadane et et al. 1996). If

we stop an experiment if and only if the posterior of a hypothesis exceeds

a certain threshold, there will be a substantial chance that the experiment

never terminates. It is therefore not possible to reason to a foregone conclu-

sion with certainty by choosing a suitable stopping rule. Similar results that

bound the probability of observing misleading evidence have been proved by

Savage (1962) and Royall (2000).

Second, the frequentist argument is valid only if frequentist evidence

standards are assumed. But from a Bayesian point of view, even biased ex-

periments can produce impressive evidence—provided the design of the ex-

periment did not interfere with the data-generating mechanism. If scientists

had to throw away arduously collected data just because the experimental

design was not properly controlled, scientific knowledge would not be at the

point where it is now.

Third, preferring a (post-experimental) decision rule that is sensitive to

the used stopping rule leads to incoherence, in the sense that a Dutch Book

can be construed against such preferences. This result by Sprenger (2009) is

derived from a more general, quite technical theorem by Kadane, Schervish

and Seidenfeld (2003).

These arguments demonstrate the coherence of the Bayesian approach to

stopping rules, and show that they should not matter post-experimentally if

statistics is supposed to be consistent with standard theories of rational pref-

erences and decisions. That said, there is a valid core in the frequentist argu-

ment: sequential trials are often costly and require careful pre-experimental

design for efficient experimentation. Also, the termination of a sequential

trial often involves complex ethical issues. Here, the choice of a stopping

rule can make a great difference to frequentists and Bayesians.
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8 Discussion: Some Thoughts on Objectivity

We have introduced the Bayesian and the frequentist paradigm as well as

their philosophical foundations, and focused on three grand questions: what

should be believe, what should we do, and how should we measure statisti-

cal evidence? In particular the last question sparks fierce debates between

Bayesians and frequentists, as well as between different strands of frequen-

tism.

The author has not concealed his inclinations toward a broadly Bayesian

view on inductive inference. This position is supported by the numerous in-

adequacies of significance tests and p-values, among which the mathematical

incompatibility with posterior probabilities, the neglect of effect size, and

Lindley’s Paradox. Moreover, the frequentist stance on stopping rules ap-

pears to lead to unacceptable consequences.

In light of these arguments, it may be surprising that frequentist statis-

tics is still the dominating school of inductive inference in science. However,

two points have to be considered. First, there are still principled reserva-

tions against the subjectivist approach because it apparently threatens the

objectivity, impartiality and epistemic authority of science. Although the

ideal of objective statistical inference as free from personal perspective

has been heavily criticized (e.g., Douglas 2009) and may have lost its appeal

for many philosophers, it is still influential for many scientists and regula-

tory agencies who are afraid of external interests influencing the inference

process. For a long time, bodies such as the FDA were afraid that Bayesian

analysis would be misused for discarding hard scientific evidence on the ba-

sis of prejudiced a priori attitudes, and only recently, the FDA has opened

up to a Bayesian analysis of clinical trials.

Second, scientific institutions such as editorial offices, regulatory bodies

and professional associations are inert: they tend to stick to practices which

have been “well probed” and to which they are familiar. Take experimental

psychology as an example: even implementing the most basic changes, such

as accompanying p-values by effect size estimates and/or power calculations,

was a cumbersome process that took a lot of time. Changing the relevant

textbook literature and the education of young scientists may take even

more time. On a positive note, a more pluralist climate has developed over

the last years, and there is now an increasing interest in Bayesian and other

non-orthodox statistical methods.
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Third, even some well-known Bayesians modelers like Gelman and Shalizi

(2013) confess that while they apply Bayesian statistics as a technical tool,

they would not qualify themselves as subjectivists. Rather, their method-

ological approach is closer to the hypothetico-deductive approach of testing

models by means of their predictions. This is again similar to the frequen-

tist rationale of hypothesis testing. So it may appear that while Bayesians

may have the winning hand from a purely foundational point of view, it is

by no means obvious that their methods provide the best answer in scien-

tific practice. This points us to the task of telling a story of how Bayesian

inference relates to statistical model checking in a hypothetico-deductive

spirit, and more generally, to investigating the relationship between qualita-

tive and quantitative, between subjective and objective accounts of theory

confirmation (Sprenger 2013b).

Finally, I would like to mention some compromises between Bayesian and

frequentist inference that Bayesians have invented for meeting objectivity

demands. First, there is the conditional frequentist approach of Berger

(2003) and his collaborators (e.g., Berger, Brown and Wolpert 1994). The

idea of this approach is to supplement frequentist inference by conditioning

on the observed strength of the evidence (e.g., the value of the Bayes factor).

The resulting hypothesis tests have a valid interpretation from a Bayesian

and a frequentist perspective and are therefore acceptable for either camp.

Nardini and Sprenger (2013) describe how this approach can ameliorate the

practice on sequential trials in medicine. Second, there are José Bernardo’s

(2012) reference priors which are motivated by the idea of maximizing

the information in the data vis-à-vis the prior and posterior distribution

(see Sprenger 2012, for a philosophical discussion).

Attempts to find a compromise between Bayesian and frequentist infer-

ence are, for the most part, still terra incognita from a philosophical point

of view. In my perspective, there is a lot to gain from carefully study-

ing how these approaches try to find a middle ground between subjective

Bayesianism and frequentism.
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Krüger, L., G. Gigerenzer, and M. Morgan (eds.) (1987): The Probabilis-

tic Revolution, Vol. 2: Ideas in the Sciences. Cambridge/MA: The MIT

Press.

Lele, S. (2004): “Evidence Functions and the Optimality of the Law of

Likelihood (with discussion)”, in: Mark Taper and Subhash Lele (eds.),

The Nature of Scientific Evidence, 191–216. The University of Chicago

Press, Chicago & London.

Lindley, D.V. (1957): “A statistical paradox”, Biometrika 44, 187–192.

Mayo, D.G. (1996): Error and the Growth of Experimental Knowledge.

Chicago & London: The University of Chicago Press.

34



Mayo, D.G. (2010): “An error in the argument from conditionality and

sufficiency to the likelihood principle”, in: D. Mayo, A. Spanos (eds.),

Error and inference: Recent exchanges on experimental reasoning, relia-

bility, and the objectivity and rationality of science, 305–314. Cambridge:

Cambridge University Press.

Mayo, D.G., and M. Kruse (2001): “Principles of inference and their conse-

quences”, in: D. Cornfield, J. Williamson (eds.), Foundations of Bayesian-

ism, 381–403. Kluwer, Dordrecht.

Mayo, D.G., and A. Spanos (2006): “Severe Testing as a Basic Concept in

a Neyman-Pearson Philosophy of Induction”, The British Journal for the

Philosophy of Science 57, 323–357.

McCloskey, D.N., and S.T. Ziliak (1996): “The Standard Error of Regres-

sions”, Journal of Economic Literature 34, 97–114.

Nardini, C., and J. Sprenger (2013): “Bias and Conditioning in Sequential

Medical Trials”, forthcoming in Philosophy of Science.

Neyman, J., and E. Pearson (1933): “On the problem of the most efficient

tests of statistical hypotheses”, Philosophical Transactions of the Royal

Society A 231, 289–337.

Neyman, J., and E. Pearson (1967): Joint Statistical Papers. Cambridge:

Cambridge University Press.

Oakes, M. (1986): Statistical inference: A commentary for the social and

behavioral sciences. New York: Wiley.

O’Hagan, T. (2012): Posting on the statistical methods used in the discovery

of the Higgs Boson, made via the email list of the International Society

for Bayesian Analysis (ISBA). Retrieved from www.isba.org on January

6, 2013.

Popper, K.R. (1934/59): Logik der Forschung. Berlin: Akademie Verlag.

English translation as The Logic of Scientific Discovery. New York: Basic

Books, 1959.

Romeijn, J.W. (2010): “Inductive Logic and Statistics”, in: D. Gabbay,

S. Hartmann and J. Woods (eds.), Handbook of the History of Logic,

Volume 10 (Inductive Logic), 625–650. Amsterdam: Elsevier.

35



Royall, R. (1997): Scientific Evidence: A Likelihood Paradigm. London:

Chapman & Hall.

Royall, R. (2000): “On the Probability of Observing Misleading Statistical

Evidence”, Journal of the American Statistical Association 95, 760–768.

Savage, L.J. (1962): The foundations of statistical inference. London:

Methuen.

Spanos, A. (2010): “Is Frequentist Testing Vulnerable to the Base-Rate

Fallacy?”, Philosophy of Science 77, 565–583.

Spielman, S. (1974): “The Logic of Significance Testing”, Philosophy of

Science 41, 211–225.

Spielman, S. (1978): “Statistical Dogma and the Logic of Significance Test-

ing”, Philosophy of Science 45, 120–135.

Sprenger, J. (2009): “Evidence and Experimental Design in Sequential

Trials”, Philosophy of Science 76, 637–649.

Sprenger, J. (2012): “The Renegade Subjectivist: Jose Bernardo’s Refer-

ence Bayesianism”, Rationality, Markets and Morality 3, 1–13.

Sprenger, J. (2013a): “Testing a Precise Null Hypothesis: The Case of

Lindley’s Paradox”, forthcoming in Philosophy of Science.

Sprenger, J. (2013b): “A Synthesis of Hempelian and Hypothetico-

Deductive Confirmation”, forthcoming in Erkenntnis.

Williamson, J. (2010): In defense of objective Bayesianism. Oxford: Oxford

University Press.

Ziliak, S.T., and D.N. McCloskey (2008): The Cult of Statistical Signifi-

cance: How the Standard Error Costs Us Jobs, Justice and Lives. Ann

Arbor: University of Michigan Press.

Zynda, L. (2013): “Subjectivism”, in: A. Hájek and C. Hitchcock (eds.),
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